概述:在一无限大的二维平面中,我们做如下假设:
1、 每次只能移动一格;
2、 不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);
3、 走过的格子立即塌陷无法再走第二次;
求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。
思路:
f[n]表示走n步的方案数,x[n]表示向下走的方案数,z[n]表示向左右走的方案数;
所以 f[n]=x[n]+z[n],
x[n]=x[n-1]+z[n-1];
z[n]=x[n-1]*2+z[n-1];
所以f[n]=2*f[n-1]+x[n-1]===>f[n]=2*f[n-1]+f[n-2];
感想:自己想了许久没想出来,参考了一下别人的想法,茅塞顿开。
#include <iostream>
using namespace std;
int main()
{
long long dp[25];
dp[1]=3;
dp[2]=7;
int N,m,flag=2;
cin>>N;
while(N--)
{
cin>>m;
if(m<=flag)
cout<<dp[m]<<endl;
else
{
for(int i=flag+1;i<=m;++i)
dp[i]=2*dp[i-1]+dp[i-2];
flag=m;
cout<<dp[m]<<endl;
}
}
return 0;
}
1445

被折叠的 条评论
为什么被折叠?



