rnn不能并行的原因:不同时间步的隐藏层之间有关联。
rnn中batch的含义
如何理解RNN中的Batch_size?_batch rnn_Forizon的博客-CSDN博客
rnn解决的问题
- 不定长输入
- 带有顺序的序列输入
1 rnn前向传播


2 rnn中的反向传播

还有loss对其他参数的求导,较为复杂。
本文介绍了RNN、LSTM、CNN和Transformer在处理序列数据时的特点与优缺点。RNN因历史状态关联无法并行,易受梯度消失影响;LSTM通过门控机制缓解这一问题,但仍然存在长序列处理挑战;CNN利用局部连接和参数共享,适合捕获局部特征,但单层难以捕捉全局信息;Transformer则能并行处理,提取全局依赖,通过位置编码处理位置信息。
rnn不能并行的原因:不同时间步的隐藏层之间有关联。
rnn中batch的含义
如何理解RNN中的Batch_size?_batch rnn_Forizon的博客-CSDN博客
rnn解决的问题
1 rnn前向传播


2 rnn中的反向传播

还有loss对其他参数的求导,较为复杂。
298

被折叠的 条评论
为什么被折叠?