题目大意
给定一棵n个节点的树,边有边权。m个操作:1. 给一条边边权加k;2.询问一棵子树第k小的深度。
修改操作的k和最初的边权不超过一个给定的常数len
n,m≤100000 len≤10
分析
首先可以求出dfs序,转化到序列上。
用数 据结构似乎无从下手,于是考虑分块。
首先查询是可以二分答案的,对于询问区间完全包含掉的块,预处理一个以权值为下标的数组的前缀和,可以O(1)查询。
那么对应的,修改操作对于未完全包含掉的块,修改一个值的时候,对应的修改前缀和数组。可以发现修改一个点后,只会修改前缀和数组的len个位。
还剩下一个问题是前缀和数组规模可能很大。由于序列是树的dfs序,如果这个数组只开到区间的min到max,可以发现这相当于对于原树的一个欧拉序遍历,总的规模大约是2 * len * n的。
查询一次复杂度
O(n√logn)
,修改一次复杂度
O(10n√)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1e5+5,G=350,M=8e6+5;
typedef long long LL;
int n,m,len,h[N],nxt[N],l[N],dep[N],dfn[N],tot,cnt[N],Mi[N],Mx[N],St[N],Id[N],Size[N];
int typ[N],L[N],R[N],K[N],s[M],ch[N];
char c;
int read()
{
int x=0,sig=1;
for (c=getchar();c<'0' || c>'9';c=getchar()) if (c=='-') sig=-1;
for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x*sig;
}
void dfs(int x)
{
dfn[x]=++tot; ch[tot]=dep[x];
Mi[Id[tot]]=min(Mi[Id[tot]],dep[x]);
Mx[Id[tot]]=max(Mx[Id[tot]],dep[x]);
for (int i=h[x];i;i=nxt[i])
{
dep[i]=dep[x]+l[i];
dfs(i);
Size[x]+=Size[i]+1;
}
}
int main()
{
n=read(); m=read(); len=read();
Id[0]=-1;
for (int i=2;i<=n;i++)
{
int f=read(); l[i]=read(); nxt[i]=h[f]; h[f]=i; Id[i]=i/G;
}
memset(Mi,127,sizeof(Mi));
dfs(1);
for (int i=0;i<m;i++)
{
typ[i]=read(); int x=read(); L[i]=dfn[x]; R[i]=L[i]+Size[x]; K[i]=read();
if (typ[i]==2)
{
Mx[Id[L[i]]]+=K[i];
if (Id[L[i]]!=Id[R[i]]) Mx[Id[R[i]]]+=K[i];
}
}
for (int i=0;i<=Id[n];i++) St[i+1]=St[i]+Mx[i]-Mi[i]+1;
for (int i=1;i<=n;i++) ch[i]-=Mi[Id[i]],s[St[Id[i]]+ch[i]]++;
for (int i=0;i<=Id[n];i++)
for (int j=St[i]+1;j<St[i+1];j++) s[j]+=s[j-1];
for (int i=0;i<m;i++)
{
int l=L[i],r=R[i],k=K[i];
if (typ[i]==2)
{
if (Id[l]==Id[r])
{
for (int j=l;j<=r;j++)
{
for (int t=ch[j];t<ch[j]+k;t++) s[St[Id[l]]+t]--;
ch[j]+=k;
}
continue;
}
for (int j=Id[l]+1;j<Id[r];j++) Mi[j]+=k,Mx[j]+=k;
for (int j=l;Id[j]==Id[l];j++)
{
for (int t=ch[j];t<ch[j]+k;t++) s[St[Id[l]]+t]--;
ch[j]+=k;
}
for (int j=r;Id[j]==Id[r];j--)
{
for (int t=ch[j];t<ch[j]+k;t++) s[St[Id[r]]+t]--;
ch[j]+=k;
}
}else
{
if (r-l+1<k)
{
printf("-1\n"); continue;
}
int Le=0,Ri=len*(n+i),mid;
for (mid=Ri>>1;Le<Ri;mid=Le+Ri>>1)
{
int ss=0;
if (Id[l]==Id[r])
{
for (int j=l;j<=r;j++) if (ch[j]+Mi[Id[l]]<=mid) ss++;
}else
{
for (int j=l;Id[j]==Id[l];j++) if (ch[j]+Mi[Id[l]]<=mid) ss++;
for (int j=r;Id[j]==Id[r];j--) if (ch[j]+Mi[Id[r]]<=mid) ss++;
for (int j=Id[l]+1;j<Id[r];j++)
{
if (mid<Mi[j]) continue;
if (mid>Mx[j])
{
ss+=s[St[j+1]-1];
continue;
}
ss+=s[St[j]+mid-Mi[j]];
}
}
if (ss<k) Le=mid+1;else Ri=mid;
}
printf("%d\n",Le);
}
}
return 0;
}