HDU 3501 数论 欧拉函数的应用

题目链接

题意:已知一个数n,求小于n且与其gcd不为1的所有数的和

思路:
首先第一感觉便是正难则反,可以先求小于n且与n互质的数的和。但是已知的欧拉函数是求个数的,但如何来求和呢?

这里涉及了一个公式:
$ Sum(n) = \phi(n)*n / 2 \ $

为什么有这个公式呢 其实理解起来很简单:

我们求两个数的GCD是常用的是辗转相除法,但同时还有一个古老的方法常被我们忽略,那就是:更相减损法

下面来自百度百科:

《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”

而该办法基于的原理便是 g c d ( n , k ) = g c d ( k , n − k )   ( n > k ) gcd(n,k) = gcd(k,n-k) \ (n>k) gcd(n,k)=gcd(k,nk) (n>k)

故若有一个数 k < n 且 gcd(n,k) = 1
则一定存在 n-k,且 gcd(n,n-k) = 1
故当我们求所有 k的和时,可以两两分组,且每一组的和就是n

故有该公式 : $ Sum(n) = \phi(n)*n / 2 \ $
(上述并不是严谨的证明,只是便于理解和记忆公式)

有了该公式,此题便很简单了~

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;

const int mod = 1000000007;
const int A = 1e5 + 10;
bool vis[A];
int pri[A],tot;

void init(){
    tot = 0;
    vis[0] = vis[1] = 1;
    for(int i=2 ;i<A ;i++){
        if(vis[i] == 0) pri[++tot] = i;
        for(int j=1 ;j<=tot&&pri[j]*i<A ;j++){
            vis[pri[j]*i] = 1;
            if(i%pri[j] == 0) break;
        }
    }
}

int main(){
    init();
    ll n;
    while(~scanf("%I64d",&n) && n){
        ll ans = (n*(n-1)/2)%mod;
        ll res = n,m = n;
        for(int i=1 ;i<=tot&&pri[i]*pri[i]<=n ;i++){
            if(n%pri[i] == 0){
                res = res/pri[i]*(pri[i]-1);
                while(n%pri[i] == 0) n/=pri[i];
            }
        }
        if(n!=1) res = res/n*(n-1);
        //printf("%I64d\n",res);
        ans = ans - res*m/2;
        printf("%I64d\n",(ans%mod+mod)%mod);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值