HDU 5829 快速数论变换

该博客详细介绍了如何利用快速数论变换(NTT)解决HDU 5829题目,该题目要求计算给定集合在不同k值下,由子集前k大元素和组成的值的总和。博主首先解释了问题思路,通过排序、组合数公式和卷积来简化问题,并最终利用NTT进行快速计算。提供了完整的代码实现。
摘要由CSDN通过智能技术生成

题目链接


题意:给你 n n n个数和一个 k k k,对于这 n n n 个数组成的集合的值,定义它的值为所有子集的和,而一个子集的值是该子集前 k k k大元素值的和(若 k > ∣ S ∣ k>|S| k>S,则为 S S S集合中所有元素值的和),问对于 k = 1 k=1 k=1 ~ n n n,输出每个 k k k值对应的集合的值。

思路:
如果我们知道了每一个子集的第 k k k大元素的和,那么对于任意的 k k k,所需要求的集合的值就是 1 1 1~ k k k的前缀和。

设该集合每一个子集的第 k k k大元素加起来的和为 f ( n ) f(n) f(n)

很明显,我们需要先将元素从大到小排序。

然后我们考虑每一个元素的贡献。
易得:
f ( n ) = ∑ i = k n A [ i ] ∗ C i − 1 k − 1 ∗ 2 n − i f(n) = \sum_{i=k}^{n} A[i]*C_{i-1}^{k-1}*2^{n-i} f(n)=i=knA[i]Ci1k12ni

解释:当第 i i i个元素为某个集合的第 k k k大元素时,该集合一定有 ( k − 1 ) (k-1) (k1)个比 A [ i ] A[i] A[i]大的元素,而 n n n个元素中一共有 i − 1 i-1 i1个比 A [ i ] A[i] A[i]大的元素,故需要乘上一个组合数。
而另外还有 n − i n-i ni个比 A [ i ] A[i] A[i]小的元素,此时这些元素可取可不取,每个元素有两种选择,故乘上一个排列。

试着将组合数打开,得:
f ( n ) = 1 ( k − 1 ) ! ∗ ∑ i = k n A [ i ] ∗ 2 n − i ∗ ( i − 1 ) ! ( i − k ) ! f(n) = \frac{1}{(k-1)!}*\sum_{i=k}^nA[i]*2^{n-i}*\frac{(i-1)!}{(i-k)!} f(n)=(k1)!1i=knA[i]2ni(ik)!(i1)!

观察易发现和式的前两项满足卷积形式,故尝试换元,使 ∑ \sum i i i从0开始,同时式子里每一个存在 i i i的地方变成 i + k i+k i+k,得:

f ( n ) = 1 2 k ( k − 1 ) ! ∑ i = 0 n − k A [ i + k ] ∗ 2 n − i ∗ ( i + k − 1 ) ! i ! f(n) = \frac{1}{2^k(k-1)!} \sum_{i=0}^{n-k} A[i+k]*2^{n-i}*\frac{(i+k-1)!}{i!} f(n)=2k(k1)!1i=0nkA[i+k]2nii!(i+k1)!


x [ i ] = 2 n − i i ! x[i] = \frac{2^{n-i}}{i!} x[i]=i!2ni
y [ i ] = A [ i ] ∗ ( i − 1 ) ! y[i] = A[i]*(i-1)! y[i]=A[i](i1)!

则:
f ( n ) = 1 2 k ( k − 1 ) ! ∑ i = 0 n − k x [ i ] ∗ y [ i + k ] f(n) = \frac{1}{2^k(k-1)!} \sum_{i=0}^{n-k}x[i]*y[i+k] f(n)=2k(k1)!1i=0nkx[i]y[i+k]

此时要想办法将 x x x y y y的下标和凑成 n − k n-k nk
考虑翻转 y y y数组,再将 y y y整体左移一位,得:

f ( n ) = 1 2 k ( k − 1 ) ! ∑ i = 0 n − k x [ i ] ∗ y [ n − k − i ] f(n) = \frac{1}{2^k(k-1)!} \sum_{i=0}^{n-k}x[i]*y[n-k-i] f(n)=2k(k1)!1i=0nkx[i]y[nki]

然后用 N T T NTT NTT或者 F F T FFT FFT维护卷积即可。


代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;

const ll mod = 998244353;
const ll N   = 262144;
const ll G   = 3;
const ll K   = 17;
ll a[N<<1],x[N<<1],y[N<<1],fac[N<<1],inv[N<<1],Inv[N<<1],inv_2;

ll fast_pow(ll n,ll m){
    ll res = 1;
    while(m){
        if(m&1) res = res*n%mod;
        n = n*n%mod;
        m >>= 1;
    }
    return res;
}

void rader(ll y[], int len){
    for(int i = 1, j = len / 2; i < len - 1; i++){
        if(i < j) swap(y[i], y[j]);
        int k = len / 2;
        while(j >= k) {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}

void ntt(ll y[], int len, int on){
    rader(y, len);
    for(int h = 2; h <= len; h <<= 1){
        ll wn = fast_pow(G,(mod-1)/h);
        if(on == -1) wn = fast_pow(wn, mod-2);
        for(int j = 0; j < len; j += h) {
            ll w = 1;
            for(int k = j; k < j + h / 2; k++) {
                ll u = y[k];
                ll t = w * y[k + h / 2] % mod;
                y[k] = (u + t) % mod;
                y[k+h/2] = (u - t + mod) % mod;
                w = w * wn % mod;
            }
        }
    }
    if(on == -1) {
        ll t = fast_pow(len, mod - 2);
        for(int i = 0; i < len; i++)
            y[i] = y[i] * t % mod;
    }
}

void init(){
    inv_2 = fast_pow(2,mod-2);
    fac[0] = 1;
    for(ll i=1 ;i<N ;i++)    fac[i] = 1LL*i*fac[i-1]%mod;
    inv[N-1] = fast_pow(fac[N-1],mod-2);
    for(ll i=N-2 ;i>=0 ;i--) inv[i] = inv[i+1]*1LL*(i+1)%mod;
}

bool cmp(ll& p,ll& q){return p>q;}

void construct_Fun(ll &n){
    scanf("%I64d",&n);
    memset(x,0,sizeof(x));memset(y,0,sizeof(y));
    for(ll i=1 ;i<=n;i++) scanf("%I64d",&a[i]);
    sort(a+1,a+1+n,cmp);
    for(ll i=0 ;i<n ;i++) x[i] = 1LL*fast_pow(2,n-i)*inv[i]%mod;
    for(ll i=1 ;i<=n;i++) y[i] = 1LL*a[i]*fac[i-1]%mod;
    for(ll i=1 ;i<=n/2;i++) swap(y[i],y[n-i+1]);
    for(ll i=0 ;i<n ;i++) y[i] = y[i+1];
    y[n] = 0;
}

void solve(ll n){
    ll m = 1;
    while(m<=(n<<1)) m<<=1;
    ntt(x,m,1);ntt(y,m,1);
    for(ll i=0 ;i<m ;i++){
        x[i] = x[i]*y[i]%mod;
    }
    ntt(x,m,-1);

    ll pre = 0;ll r = inv_2;
    for(ll k=1 ;k<=n ;k++){
        ll res = r*inv[k-1]%mod*x[n-k]%mod;
        pre = (pre+res)%mod;
        printf("%I64d ",pre);
        r = r*inv_2%mod;
    }
    puts("");
}

int main(){
    init();
    ll T;scanf("%I64d",&T);
    while(T--){
        ll n;
        construct_Fun(n);
        solve(n);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值