GaoJieVery6
码龄7年
关注
提问 私信
  • 博客:155,596
    155,596
    总访问量
  • 133
    原创
  • 612,775
    排名
  • 55
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-02-25
博客简介:

GaoJieVery6

博客描述:
龙猫龙猫龙猫龙猫好萌呀 ^_^
查看详细资料
个人成就
  • 获得49次点赞
  • 内容获得32次评论
  • 获得348次收藏
  • 代码片获得688次分享
创作历程
  • 15篇
    2019年
  • 118篇
    2018年
成就勋章
TA的专栏
  • UVa OJ
    33篇
  • 数据结构
    28篇
  • hdu OJ
    17篇
  • 动态规划
    7篇
  • 图论
    19篇
  • 机器学习
    20篇
  • LeetCode
    8篇
  • 矩阵运算/数值计算/大整数计算
    4篇
  • C++面向对象高级编程
    11篇
  • POJ
    6篇
  • 杂题
    5篇
  • Codeforces
    1篇
  • 组合数学
    1篇
  • matlab
    5篇
  • 实用操作技巧
    1篇
  • 计算机视觉特征提取与图像处理
    4篇
  • 数论
    1篇
  • 深度学习
    4篇
  • Python
    1篇
  • tensorflow学习笔记
    9篇
兴趣领域 设置
  • 人工智能
    tensorflow
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

linux编译

gcc hello.c -o hello
原创
发布博客 2019.11.10 ·
231 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NumPy速查

目录1. ndarry属性2. 创建数组3. 从已有的数组创建数组4. NumPy从数值范围创建数组5. NumPy切片和索引6. NumPy高级索引7. 广播操作8. 数组操作9. NumPy数学运算10. NumPy IO11. NumPy Matplotlib12. NumPy.array13. ndarray与tensor的相互转换...
原创
发布博客 2019.09.10 ·
639 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

tensorflow实现去噪自编码器

import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', validation_size...
原创
发布博客 2019.09.08 ·
365 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CPM服饰关键点定位

# -*- coding: utf-8 -*-import tensorflow as tfimport numpy as npimport pandas as pdfrom sklearn.utils import shufflefrom sklearn.model_selection import train_test_splitimport cv2import matplo...
原创
发布博客 2019.09.06 ·
610 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

部分tensorflow函数

1. tf.layers.conv2dconv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initi...
原创
发布博客 2019.09.08 ·
257 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RNN.LSTM异步预测股价

import pandas as pdimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as plt%matplotlib inlinefrom sklearn.preprocessing import MinMaxScalerimport timedata = pd.read_csv('data_...
原创
发布博客 2019.09.04 ·
383 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

理解tf.nn.rnn_cell

一、学习单步的RNN:RNNCell如果要学习TensorFlow中的RNN,第一站应该就是去了解“RNNCell”,它是TensorFlow中实现RNN的基本单元,每个RNNCell都有一个call方法,使用方式是:(output, next_state) = call(input, state)。借助图片来说可能更容易理解。假设我们有一个初始状态h0,还有输入x1,调用call(x1,...
原创
发布博客 2019.09.01 ·
2414 阅读 ·
6 点赞 ·
1 评论 ·
15 收藏

tensorboard数据可视化

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport warningswarnings.filterwarnings("ignore")summary_dir = "/path/to/sd/sd1"batch_size = 100train_steps = 10...
原创
发布博客 2019.09.01 ·
150 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LSTM预测sin(X)

1.模型多层LSTM2.用到的函数tf.nn.rnn_cell.BasicLSTMCell(num_units)num_units这个参数的大小就是LSTM输出结果的维度。例如num_units=128, 那么LSTM网络最后输出就是一个128维的向量。http://www.mtcnn.com/?p=529tf.nn.dynamic_rnnhttps://blog.csdn...
原创
发布博客 2019.08.31 ·
433 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

利用tensorflow实现的类LeNet-5模型识别mnist

1.用到的部分函数tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)input : 输入的要做卷积的图片,要求为一个张量,shape为 [ batch, in_height, in_weight, in_channel ],其中batch为图片的...
原创
发布博客 2019.08.30 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

tensorflow识别mnist的最佳样例程序

1.mnist_inferenceimport tensorflow as tfinput_node = 784output_node = 10layer1_node = 500def get_weight_variable(shape, regularizer) : weights = tf.get_variable("weights", shape, ...
原创
发布博客 2019.08.24 ·
284 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

乱七八糟的tf

1.tf.Variable()相关my_state = tf.Variable(0, name = "counter") #创建一个Op变量my_state,并初始化为0one = tf.constant(1) #创建一个Op常量赋值为1new_value = tf.add(my_state, one)update = tf.assign(my_state, new_value) ...
原创
发布博客 2019.08.23 ·
219 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

识别MNIST

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datainput_node = 784output_node = 10layer1_node = 500batch_size = 100learning_rate_base = 0.8learning_rate_decay =...
原创
发布博客 2019.08.22 ·
187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.train.ExponentialMovingAverage()

import tensorflow as tfv1 = tf.Variable(0, dtype=tf.float32)step = tf.Variable(0, trainable=False)ema = tf.train.ExponentialMovingAverage(0.99, step)maintain_averages_op = ema.apply([v1])#The ap...
原创
发布博客 2019.08.20 ·
248 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python 提取文件中的数字

filename = 'C:\\Users\\lenovo\\Documents\\_rea\\ztest.txt'with open(filename) as fileA : lines = fileA.readlines()ans = ''inta = []for line in lines : line = line.rstrip() ans += line...
原创
发布博客 2019.07.28 ·
7704 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

快速判断二进制编码中“1”有奇数个还是偶数个

先给出代码int odd_ones(unsigned x) { x = x ^ (x >> 1); x = x ^ (x >> 2); x = x ^ (x >> 4); x = x ^ (x >> 8); x = x ^ (x >> 16); return x &amp...
原创
发布博客 2018.10.21 ·
3220 阅读 ·
8 点赞 ·
1 评论 ·
14 收藏

数据正规化(data normalization)的原理及实现(numpy)

原理数据正规化(data normalization)是将数据的每个样本(向量)变换为单位范数的向量,各样本之间是相互独立的.其实际上,是对向量中的每个分量值除以正规化因子.常用的正规化因子有 L1, L2 和 Max.假设,对长度为 n 的向量,其正规化因子 z 的计算公式,如下所示:注意:Max 与无穷范数  不同,无穷范数 是需要先对向量的所有分量取绝对值,然后取其中的最大值;而...
原创
发布博客 2018.10.20 ·
10611 阅读 ·
2 点赞 ·
2 评论 ·
10 收藏

UVa11582 巨大的斐波那契数列

由于模数为n,又因为F[i] = (F[i-1] + F[i-2]) % n,所以F[i]只有n*n种可能(F[i-1]有n种可能,F[i-2]有n种可能),所以循环节长度比小于n*n,因此我们只要算出循环节,再用快速幂解出k = a^b%L(L为循环节长度),输出F[k]即可。#include <iostream>#include <cstring>#inclu...
原创
发布博客 2018.09.27 ·
412 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

吴恩达机器学习第八次作业: 异常检测Anomaly Detection

这是习题和答案的下载地址,全网最便宜,只要一积分哦~~~https://download.csdn.net/download/wukongakk/106026570.综述异常检测算法用于检测异常数据,通常在异常数据的数量远小于正常数据的数量时使用异常检测算法,在两者数量相差不大的时候,我们通常会选择逻辑回归或神经网络等算法。1.Load Example Dataset%% =...
原创
发布博客 2018.09.26 ·
1113 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

边缘检测

1.一阶边缘检测newpic(i, j) = |2*pic(i, j) - pic(i+1,j) - pic(i, j+1)|pic = imread('C:\Users\lenovo\Desktop\素材\ea2f2780b0ca47909964541cf58a076e.jpg');pic = rgb2gray(pic);figure;imshow(pic);figure;[...
原创
发布博客 2018.09.26 ·
269 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多