诺贝尔物理学奖颁给与机器学习和神经网络相关的研究,这是一个非常引人注目的转折,标志着物理学与计算科学的深度融合。在传统上,物理学的诺奖多是颁给那些揭示自然界基本规律的发现,例如量子力学、广义相对论等,而此次颁奖给了一个并不完全属于物理学经典领域的方向——机器学习和神经网络。也正是因为如此,网上有很多人说,学物理的和不学物理的都沉默了...
关于物理学界对机器学习和神经网络获诺贝尔物理学奖的质疑,确实可以理解。物理学有着深厚的传统,长期以来被视为一门依赖实验验证和严格数学推理的学科。而机器学习和神经网络的本质是统计模型与计算技术,它们更注重模式识别和数据处理,有时并不直接提供物理学家们习惯的明确因果关系或“自然法则”。
反对的声音可能认为,这些技术更像是工具,帮助物理学家在数据分析或实验设计中提升效率,但并未提供实质上的物理学原理或定律。他们可能担心,奖项的颁发是否偏离了物理学传统的研究方向——即直接揭示自然界的基本规律,而过于强调技术的应用性。
不过,我个人认为,这种质疑反映了科学思维模式的一种转变期,而不是技术与科学本质的对立。科学的进步本身就是一个不断融合新工具、新思想的过程。回顾历史,物理学也曾经历过类似的变革。例如,19世纪的数学分析方法曾被一些物理学家认为过于抽象,直到它们逐渐成为理解电磁学、热力学的核心工具。同样地,量子力学初期的数学框架也曾被认为是“非物理”的,直到它成为现代物理学的基石。
机器学习虽然本质上是计算工具,但它为物理学家提供了一个全新的视角。尤其在复杂系统和大数据分析中,它帮助我们探索以前难以建模的现象,揭示潜在的物理机制。例如,材料科学、宇宙学、量子物理等领域正通过神经网络取得突破性进展。在这些领域,传统的理论和实验方法往往受限,而机器学习的加入正在填补这一空白。
关键问题在于,我们如何看待“物理学”本身。物理学不仅仅是发现和验证规律,它也是一个不断发展、动态变化的领域。随着工具和技术的进步,研究方法必然会拓展。机器学习作为一种强大的工具,正在改变我们处理物理问题的方式,但这并不意味着它取代了物理学的核心精神,而是在扩展它的边界。
因此,尽管质疑存在,但它们更多是对传统思维的挑战,而不是对新方向的否定。科学需要保持开放的态度,去探索和接受新的可能性,尤其是在当今数据驱动和计算技术高速发展的时代。物理学界的确需要平衡这种新工具与核心理论间的关系,但最终,这将推动我们对宇宙的理解走得更远。
至于我们学生,在自己的工作上keep doing就好啦。