X1996_
码龄7年
关注
提问 私信
  • 博客:51,576
    51,576
    总访问量
  • 57
    原创
  • 744,334
    排名
  • 9
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2018-04-15
博客简介:

X1996_的博客

查看详细资料
个人成就
  • 获得24次点赞
  • 内容获得17次评论
  • 获得138次收藏
  • 代码片获得1,321次分享
创作历程
  • 12篇
    2022年
  • 7篇
    2021年
  • 39篇
    2020年
成就勋章
TA的专栏
  • 《动手学习深度学习
    9篇
  • python3 study
    9篇
  • Google Colab
    3篇
  • TensorFlow 2.0学习
    13篇
  • 菜鸟之路
    2篇
  • C/C++
    1篇
  • OpenCV学习之路
    17篇
  • Openwrt
    1篇
兴趣领域 设置
  • 人工智能
    图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

tensorflow中callbacks

tf.keras.callbacks是回调函数,在训练过程中可以访问用来做一些决策tf.keras.callbacks.EarlyStopping早停函数,当监控目标monitor训练patience轮都不下降时,结束训练tf.keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None,
原创
发布博客 2022.05.04 ·
874 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

tensorflow中model.compile()

model.compile()用来配置模型的优化器、损失函数,评估指标等里面的具体参数有:compile( optimizer='rmsprop', loss=None, metrics=None, loss_weights=None, weighted_metrics=None, run_eagerly=None, steps_per_execution=None, jit_compile=None, **kwargs)我
原创
发布博客 2022.05.04 ·
2568 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

python中*args和**kwargs的理解,Python中的*args和**kwargs的理解与用法

来自:https://blog.csdn.net/weixin_42312227/article/details/1161786031、*args和**kwargs 这两个是python中方法的可变参数。2、*args表示任何多个无名参数,它是一个tuple;3、kwargs表示关键字参数,它是一个dict。并且同时使用*args和kwargs时,必须*args参数列要在**kwargs前,像foo(a=1, b=‘2’, c=3, a’, 1, None, )这样调用的话,会提示语法错误“Synt
原创
发布博客 2022.04.24 ·
4528 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

google colab 训练模型时,第一轮为什么非常慢

google colab 训练模型时,第一轮为什么非常慢,怎么解决感谢这位老兄:https://www.xiaoheidiannao.com/249953.html我在这里找到了解决方案一开始我只是以为是刚训练时载入数据或模型初始化那些比较慢,第一轮训练后面连的训练耗时差了十几倍,一开始我的batch_size设置的大一点,第一轮训练大概要2个小时左右,后面把batch_size改小了一倍,第一轮训练直接要5到6个小时了,实在不能忍受了,毕竟一天GPU的使用时间有限,然后就去找了找原因,解决办法。
原创
发布博客 2022.04.18 ·
1452 阅读 ·
2 点赞 ·
2 评论 ·
7 收藏

7. LeNet

LeNet网络有两层卷积层,两层池化层,三层全连接层构成,搭建模型直接堆叠就好了搭建网络import tensorflow as tffrom d2l import tensorflow as d2ldef net(): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(filters=6, kernel_size=5, activation='sigmoid',
原创
发布博客 2022.04.17 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

6. 正则化 Dropout

正则化正则化主要是为了减少模型的过拟合,就像激活函数是为了增加网络的非线性。Dropout只是其中的一种方法,主要是以一个概率将隐藏层的隐藏单元置为03. 通常越浅层网络置0的概率越低。import tensorflow as tffrom d2l import tensorflow as d2l# 正则化 以dropout的概率丢弃张量输入X中的元素def dropout_layer(X, dropout): # 断言 判断dropout是否在0-1 assert 0 <
原创
发布博客 2022.04.16 ·
308 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

5.搭建两层网络

跟前面的没什么差别,搭建两层网络就初始化两层网络的参数就好了1. 自己初始化参数模型那些,巴拉巴拉巴拉************会用到前面的训练、预测、评估部分函数,复制过来就好了没有***d2l***库的话安装就好了!pip install d2limport tensorflow as tffrom d2l import tensorflow as d2l# 分批载入数据集batch_size = 256train_iter, test_iter = d2l.load_data_fas
原创
发布博客 2022.04.16 ·
480 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

4.简洁实现softmax分类

与3中的一样,只是把自己实现的函数用API接口代替了,看着简洁了import tensorflow as tffrom d2l import tensorflow as d2lbatch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)# 初始化模型参数net = tf.keras.models.Sequential()net.add(tf.keras.layers.Flatten(input
原创
发布博客 2022.04.15 ·
316 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

3从0实现softmax训练,实现Fashion-MNIST分类

一. 数据集介绍Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像 和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt
原创
发布博客 2022.04.15 ·
624 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

cv2.imshow() is disabled in Colab, because it causes Jupyter sessions to crash;(Colab解决显示图片问题)

cv2.imshow()在Colab不能显示图片问题虽然不了解原因,但是换一下就可以了from google.colab.patches import cv2_imshowimport cv2 as cvimport numpy as npimg = cv.imread("111.jpg")cv2_imshow(img)
原创
发布博客 2022.04.15 ·
4194 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

2利用API实现线性回归深度学习训练

这一个就是把昨天写的一些函数用API代替实现,不需要自己去写,比较简洁,实现的功能跟1一样,都是实现一个简单的线性回归网络import randomimport tensorflow as tf# 生成数据集 y = X*w + b + (误差)def Data(w, b, num): # 生成全0矩阵 X = tf.zeros((num, w.shape[0])) # 给x随机赋初值 X = X + tf.random.normal(shape=X.shape) # 计算X对
原创
发布博客 2022.04.15 ·
1061 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

1.实现一个最简单的线性回归深度学习训练

**一、实现深度学习训练主要有数据集的制作载入数据集定义模型并初始化模型参数定义损失函数定义优化函数设置迭代次数,batch_size大小,开始训练**import randomimport tensorflow as tf# 生成数据集 y = X*w + b + (误差)def Data(w, b, num): # 生成全0矩阵 X = tf.zeros((num, w.shape[0])) # 给x随机赋初值 X = X + tf.random.norma
原创
发布博客 2022.04.13 ·
1560 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Google Colab中把pyth3.7版本更换成python3.6(tensorflow1.13)

1.把python默认版本3.7换成3.6,需要先把pip卸载了,换成3.6后再安装pip,不然后面pip下载安装的包在3.7的包下。#卸载python3.7下的pip!python -m pip uninstall pip2.删除python3.7的软连接,然后换成python3.61.先把这个路径下的文件删除“ /usr/local/bin/python2.把python3.6的软连接设置为python!sudo update-alternatives --remove pyt
原创
发布博客 2021.12.29 ·
7173 阅读 ·
6 点赞 ·
4 评论 ·
29 收藏

二、ZooKeeper集群分布式协调服务 - 集群分布式锁设施课后习题

1.ZooKeeper关键特性有哪些。*A .最终一致性B .实时性C .原子性D .顺序一致性正确答案:A,B,C,D2.ZooKeeper客户端常用命令使用包含哪些。*A .调用ZooKeeper客户端,执行命令:zkCli.sh –server 172.16.0.1:24002B .创建节点:zkCli.sh –server 172.16.0.1:24002C .列出节点子节点:ls /nodeD .创建节点数据: create /node正确答案:A,B,C,D3.Str
原创
发布博客 2021.07.21 ·
481 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

一、大数据行业与技术趋势课后习题

1.大数据不能做什么。*A .不能替代管理的决策力B .不能替代有效的商业模式C .不能无目的的发现知识D .不能替代专家的作用正确答案:A,B,C,D2.大数据可以应用于哪些领域。*A .零售B .金融C .城市D .医疗正确答案:A,B,C,D3.FusionInsight SparkSQL具有以下哪些特性。*A .SQL兼容性B .数据更新和删除C .稳定和高性能的大规模SparkD .高可靠性正确答案:A,B,C4.Intel Hadoop利用SSD、CPU
原创
发布博客 2021.07.19 ·
566 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

TypeError: __array__() takes 1 positional argument but 2 were given

np.array(image,np.float32)语句出现TypeError: array() takes 1 positional argument but 2 were given错误时:把np.array(image,np.float32)改成:np.asarray(image).astype('float32')基础不好,我也不知道为什么,以前能跑的代码现在不能跑了,改了一天才改好,记录一下。...
原创
发布博客 2021.07.02 ·
2048 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

7 元组

元组里定义的数据不能修改,但是元组里的字典可以修改,元组里的函数只有index,count,len
原创
发布博客 2021.01.04 ·
211 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

6 列表操作

** 查找**通过下标直接查找2. 通过函数查找# 直接查找位置,找不到报错index()# 统计出现次数count()# 访问列表长度len()3. 判断某个数据是否存在列表中用 in ,存在返回true,否则false增加append()2. extend()这个方法跟append方法有点不同,当添加为一个序列时,这个方法会把序列拆开逐一添加3. 插入inser()在指定位置添加元素3. 删除del 删除整个列表或者删除某个列表元素2. pop()如果不
原创
发布博客 2021.01.04 ·
125 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

5 字符串操作

字符串字符串的定义:字符串可以用单引号,双引号,三引号来定义,三引号定义时可以直接换行切片里面的参数取值正负都可以,步长为正数的时候是从左往右取,为负数时是从右往左取。(最后一个数的位置是-1)步长的方向与开始位置到结束位置的方向要一致,不然会报错常用操作查找find()# 从左向右rfind()#从右向左index()#从左向右rindex()#从右向左count();find()返回下标或-1index()返回下标或报异常修改replace()#替换split()#
原创
发布博客 2021.01.04 ·
334 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

4 运算符、随机数生成、三目运算符

运算符的分类not为非,取反
原创
发布博客 2020.12.31 ·
136 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多