我的AI之路(7)--安装OpenCV3 Python 3.4.1 + Contrib以及PyCharm

      AI的一个重大应用领域是计算机视觉,OpenCV是著名的计算机视觉库,由C/C++实现,同时支持Python和MATLAB等语言接口,虽然已经有了比OpenCV表现更好的视觉库,但以OpenCV为入口熟悉计算机视觉工作原理大有裨益,Caffe等AI工具更是用到了OpenCV,所以个人感觉掌握OpenCV编程知识和相关算法为AI关于图像处理这块功能可以打下基础。

  安装Anaconda3后,确保/home/<user>/anaconda3和/home/<user>/anaconda3/Scripts在PATH路径里,然后安装OpenCV3是很简单的,到https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv 下载安装文件(最好是带contrib的)opencv_python-3.4.1+contrib-cp36-cp36m-win_amd64.whl,然后把这个文件拷贝到 /home/<user>/anaconda3/lib/site-packages/,然后执行 

pip install opencv_python-3.4.1+contrib-cp36-cp36m-win_amd64.whl 

然后执行:

python

import cv2

没有报任何错误就OK了。

顺便说一句,这里的cv2并不是指OpenCV2,而是指cv2模块,cv是面向过程编程实现的视觉库模块,而cv2是面向对象编程实现的,相当于重新实现的升级版视觉库,现在明白了吧,跟OpenCV的版本号没关系 。

如果在Anaconda的命令行窗口里工作或者使用Anaconda随带的Spyder作为python编码和执行工具,那么到此就可以使用OpenCV python编程和执行python代码了,如果使用其它专业Python编程工具,比如PyCharm,那么还需要做一步:

前面当执行 pip install opencv_python-3.4.1+contrib-cp36-cp36m-win_amd64.whl后,anaconda3/lib/site-packages/下生成了个文件cv2.cp36-win_amd64.pyd,在/home/<user>/anaconda3/lib/site-packages/创建个目录叫cv2,然后把cv2.cp36-win_amd64.pyd 拷贝(或者移动)到/home/<user>/anaconda3/lib/site-packages/cv2/下,然后在此目录下创建一个__init__.py文件,输入文件内容如下:

import sys
import os
import importlib

# FFmpeg dll is not found on Windows without this
os.environ["PATH"] += os.pathsep + os.path.dirname(os.path.realpath(__file__))

# make IDE's (PyCharm) autocompletion happy
from cv2 import *

# wildcard-import above does not import "private" variables like __version__, this makes them available

globals().update(importlib.import_module('cv2.cv2').__dict__)

如果不做这步,即使你在PyCharm的setting里指定了Project Interpreter为/home/<user>/anaconda3/python,PyCharm在执行"import cv2"时仍然报错找不到cv2模块,PyCharm似乎只解析/home/<user>/anaconda3/lib/site-packages/下子目录里的pyd文件,而不解析/home/<user>/anaconda3/lib/site-packages/下的pyd文件,因此单独创建cv2子目录并把pyd文件移动到cv2子目录里去是必须的。

到https://www.jetbrains.com/pycharm/download/下载PyCharm免费的community版本安装程序,安装后使用时像Eclipse 和IntelliJ等开发工具一样需要先创建一个项目(PyCharm需要JDK来支持运行,估计跟是在Eclipse基础上修改而来的安静),然后在项目里创建源码文件。

创建项目后需设置编译运行环境,点击进入菜单File->setting->Project <project_name>->Project Interpreter,点击空白路径栏最右边的齿轮图标,选择add,然后在弹出窗口中点击选择"Conda Environment",在点击选择"Existing environment",然后点击Interpreter路径栏最右边的browser图标,选择/home/<user>/anaconda3/python(我的Windows里是C:\Anaconda3\python.exe),下图以Windows环境为例:


点击OK,PyCharm立即开始解析/home/<user>/anaconda3/lib/site-packages/下面所有子目录模块,解析完了点击OK关闭窗口,然后点击菜单Run->Edit Configures,在弹出窗口中点左上方的+号,在弹出的小菜单中选择python,然后在右边窗口里的Python interpreter栏选择刚才在setting里设置好的python配置: Python 3.6(Cameo),下图以Windows环境为例:


点击OK关闭窗口,然后就可以点击菜单 Run->Run Cameo或者左下方工具栏里的Run图标执行python源码了:



如果报错找不到cv2模块,那就是你忘了按上面说的办法在/home/<user>/anaconda3/lib/site-packages/下创建cv2模块。

我的AI之路(1)--前言

我的AI之路(2)--安装Fedora 28

我的AI之路(3)--安装Anaconda3 和Caffe

我的AI之路(4)--在Anaconda3 下安装Tensorflow 1.8

我的AI之路(5)--如何选择和正确安装跟Tensorflow版本对应的CUDA和cuDNN版本

我的AI之路(6)--在Anaconda3 下安装PyTorch

我的AI之路(7)--安装OpenCV3_Python 3.4.1 + Contrib以及PyCharm

我的AI之路(8)--体验用OpenCV 3的ANN进行手写数字识别及解决遇到的问题

我的AI之路(9)--使用scikit-learn

我的AI之路(10)--如何在Linux下安装CUDA和CUDNN

我的AI之路(11)--如何解决在Linux下编译OpenCV3时出现的多个错误

我的AI之路(12)--如何配置Caffe使用GPU计算并解决编译中出现的若干错误

我的AI之路(13)--解决编译gcc/g++源码过程中出现的错误

我的AI之路(14)--Caffe example:使用MNIST数据集训练和测试LeNet-5模型

我的AI之路(15)--Linux下编译OpenCV3的最新版OpenCV3.4.1及错误解决


阅读更多
上一篇我的AI之路(3)--安装Anaconda3 和Caffe
下一篇我的AI之路(4)--在Anaconda3 下安装Tensorflow 1.8
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭