我的AI之路(19)--如何在Windows下安装pycocotools PythonAPI

    当你在Windows下执行Tensorflow object_detection的脚本时可能会如下报错:

 这时因为object_detection下面默认是没有包含cocotools的python实现代码的,Anaconda默认也没提供这个库,需要安装pycocotools,但如果你执行:

   python -m pip install pycocotools

又可能会出现如下错误:

     这说明你的Windows下没有c/c++代码编译环境(因为pycocotools的主站点源码https://github.com/cocodataset/cocoapi默认只提供了源码,没有针对各平台编译好了的release,而且声称将来不支持Windows! ),这个不是简单安装个MS VC就行了(你会发现安装了还是报这个错),需要到这里下载visualcppbuildtools_full.exe来安装。

      安装编译环境完后,再执行python -m pip install pycocotools,结果还是报错,说invalid numeric argument '/Wno-cpp' :

   这是因为pip安装默认下载的源码是不支持Windows上编译的,需要从一个让pycocotools PythonAPI支持使用Windows和Python 3 来build的clone站点https://github.com/philferriere/cocoapi来安装,执行下面的命令:

        pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

结果很快就下载编译并安装成功了:

      补充:

       近来发现以执行 pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI 来下载、编译和安装pycocotools Python API时git经常下载不了源码,出现连接超时之类的错误,尝试换了下面的办法很快就弄好了:

       先执行git https://github.com/philferriere/cocoapi.git下载源码到本地,如果不行直接打开网站https://github.com/philferriere/cocoapi,然后点击clone or download下载源码的zip包到本地并展开到cocoapi-master,然后执行:

        cd cocoapi-master\PythonAPI\

        #下面两个命令酌情选择其中之一或者两个都执行也没什么,使用过conda的很好理解,这两个命令分别用于安装pycocotools Python API到当前本地环境env和安装到base(或叫root)环境:

       # install pycocotools locally

        python setup.py build_ext --inplace

       # install pycocotools to the Python site-packages

        python setup.py build_ext install

       #删掉编译时生成的临时目录,其实删不删无所谓,空闲空间足够大时无所谓这点点

        rm -rf build

即可完成安装,没错,就是这么简单!所以建议本地保存一份这个源码,以备日后需要安装环境时https://github.com/philferriere/cocoapi.git连不上。

我的AI之路(1)--前言

我的AI之路(2)--安装Fedora 28

我的AI之路(3)--安装Anaconda3 和Caffe

我的AI之路(4)--在Anaconda3 下安装Tensorflow 1.8

我的AI之路(5)--如何选择和正确安装跟Tensorflow版本对应的CUDA和cuDNN版本

我的AI之路(6)--在Anaconda3 下安装PyTorch

我的AI之路(7)--安装OpenCV3_Python 3.4.1 + Contrib以及PyCharm

我的AI之路(8)--体验用OpenCV 3的ANN进行手写数字识别及解决遇到的问题

我的AI之路(9)--使用scikit-learn

我的AI之路(10)--如何在Linux下安装CUDA和CUDNN

我的AI之路(11)--如何解决在Linux下编译OpenCV3时出现的多个错误

我的AI之路(12)--如何配置Caffe使用GPU计算并解决编译中出现的若干错误

我的AI之路(13)--解决编译gcc/g++源码过程中出现的错误

我的AI之路(14)--Caffe example:使用MNIST数据集训练和测试LeNet-5模型

我的AI之路(15)--Linux下编译OpenCV3的最新版OpenCV3.4.1及错误解决

我的AI之路(16)--云服务器上安装和调试基于Tensorflow 1.10.1的训练环境

我的AI之路(17)--Tensorflow和Caffe的API及Guide

我的AI之路(18)--Tensorflow的模型安装之object_detection

我的AI之路(19)--如何在Windows下安装pycocotools PythonAPI

我的AI之路(20)--用Tensorflow object_detection跑raccoon数据集

我的AI之路(21)--用Tensorflow object_detection跑PASCAL VOC 2012数据集

我的AI之路(22)--使用Object_Detection_Tensorflow_API

我的AI之路(23)--在Windows下编译Bazel和使用Bazel编译tensorflow

 

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页