Find the element that appears once

来源:http://www.geeksforgeeks.org/find-the-element-that-appears-once/


问题:在一个数组中,其中有一个元素只出现一次,其余元素都出现三次,如何在O(n)的时间复杂度和O(1)的复杂度内找到那个元素。


首先我的想法是,一个数如果出现了三次,则这个数的二进制对应的位上1的个数肯定为3.这样我们可以枚举每一位,计算所有数在该位上1的和,如果这个和不是3的倍数,则多出的那个1肯定是由只出现过一次的那个值提供的,这样我们可以实现复杂度为O(30*n)和O(1)的空间复杂度解决该问题,这也是这篇文章中所说的第二种方法。相传这是谷歌的面试题,我给第一种做法的作者跪了,我还是没看懂。位运算真是太神奇了,许多东西需要慢慢去体会。


第一种思路的代码:

#include <stdio.h>
 
int getSingle(int arr[], int n)
{
    int ones = 0, twos = 0 ;
 
    int common_bit_mask;
 
    // Let us take the example of {3, 3, 2, 3} to understand this
    for( int i=0; i< n; i++ )
    {
        /* The expression "one & arr[i]" gives the bits that are
           there in both 'ones' and new element from arr[].  We
           add these bits to 'twos' using bitwise OR
 
           Value of 'twos' will be set as 0, 3, 3 and 1 after 1st,
           2nd, 3rd and 4th iterations respectively */
        twos  = twos | (ones & arr[i]);
 
 
        /* XOR the new bits with previous 'ones' to get all bits
           appearing odd number of times
 
           Value of 'ones' will be set as 3, 0, 2 and 3 after 1st,
           2nd, 3rd and 4th iterations respectively */
        ones  = ones ^ arr[i];
 
 
        /* The common bits are those bits which appear third time
           So these bits should not be there in both 'ones' and 'twos'.
           common_bit_mask contains all these bits as 0, so that the bits can 
           be removed from 'ones' and 'twos'   
 
           Value of 'common_bit_mask' will be set as 00, 00, 01 and 10
           after 1st, 2nd, 3rd and 4th iterations respectively */
        common_bit_mask = ~(ones & twos);
 
 
        /* Remove common bits (the bits that appear third time) from 'ones'
             
           Value of 'ones' will be set as 3, 0, 0 and 2 after 1st,
           2nd, 3rd and 4th iterations respectively */
        ones &= common_bit_mask;
 
 
        /* Remove common bits (the bits that appear third time) from 'twos'
 
           Value of 'twos' will be set as 0, 3, 1 and 0 after 1st,
           2nd, 3rd and 4th itearations respectively */
        twos &= common_bit_mask;
 
        // uncomment this code to see intermediate values
        //printf (" %d %d \n", ones, twos);
    }
 
    return ones;
}
 
int main()
{
    int arr[] = {3, 3, 2, 3};
    int n = sizeof(arr) / sizeof(arr[0]);
    printf("The element with single occurrence is %d ",
            getSingle(arr, n));
    return 0;
}

Output:

2

Time Complexity: O(n)
Auxiliary Space: O(1)


第二种方法是我们容易想到的,程序代码如下:

#include <stdio.h>
#define INT_SIZE 32
 
int getSingle(int arr[], int n)
{
    // Initialize result
    int result = 0;
 
    int x, sum;
 
    // Iterate through every bit
    for (int i = 0; i < INT_SIZE; i++)
    {
      // Find sum of set bits at ith position in all
      // array elements
      sum = 0;
      x = (1 << i);
      for (int j=0; j< n; j++ )
      {
          if (arr[j] & x)
            sum++;
      }
 
      // The bits with sum not multiple of 3, are the
      // bits of element with single occurrence.
      if (sum % 3)
        result |= x;
    }
 
    return result;
}
 
// Driver program to test above function
int main()
{
    int arr[] = {12, 1, 12, 3, 12, 1, 1, 2, 3, 2, 2, 3, 7};
    int n = sizeof(arr) / sizeof(arr[0]);
    printf("The element with single occurrence is %d ",
            getSingle(arr, n));
    return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值