HDU 4003 Find Metal Mineral

Problem Description
Humans have discovered a kind of new metal mineral on Mars which are distributed in point‐like with paths connecting each of them which formed a tree. Now Humans launches k robots on Mars to collect them, and due to the unknown reasons, the landing site S of all robots is identified in advanced, in other word, all robot should start their job at point S. Each robot can return to Earth anywhere, and of course they cannot go back to Mars. We have research the information of all paths on Mars, including its two endpoints x, y and energy cost w. To reduce the total energy cost, we should make a optimal plan which cost minimal energy cost.

There are multiple cases in the input.
In each case:
The first line specifies three integers N, S, K specifying the numbers of metal mineral, landing site and the number of robots.
The next n‐1 lines will give three integers x, y, w in each line specifying there is a path connected point x and y which should cost w.
1<=N<=10000, 1<=S<=N, 1<=k<=10, 1<=x, y<=N, 1<=w<=10000.

For each cases output one line with the minimal energy cost.


#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <functional>
using namespace std;
const int maxn = 10010;
typedef long long ll;
int N, S, K;

struct Edge {
    int v, w, next;
    Edge() { }
    Edge(int _v, int _w, int _next) : v(_v), w(_w), next(_next) { }
int head[maxn], edge_sum;

void init_graph() {
    edge_sum = 0;
    memset(head, -1, sizeof(head));

void add_edge(int u, int v, int w) {
    edges[edge_sum].v = v;
    edges[edge_sum].w = w;
    edges[edge_sum].next = head[u];
    head[u] = edge_sum++;

    edges[edge_sum].v = u;
    edges[edge_sum].w = w;
    edges[edge_sum].next = head[v];
    head[v] = edge_sum++;

ll dp[maxn][12];

void dfs(int u, int fa) {

    for(int i = head[u]; i != -1; i = edges[i].next) {
        int v = edges[i].v;
        int w = edges[i].w;
        if(v == fa) continue;
        dfs(v, u);
        for(int j = K; j >= 1; --j) {
            dp[u][j] += (dp[v][0] + 2 * w);
            for(int k = 1; k <= j; ++k) {
                //printf("Test: %I64d %I64d %I64d\n", dp[u][j], dp[u][j-k], dp[v][k] + k * w);
                dp[u][j] = min(dp[u][j], dp[u][j-k] + dp[v][k] + k * w);
        dp[u][0] += (dp[v][0] + 2 * w);
    return ;

int main() {

    //freopen("aa.in", "r", stdin);
    int u, v, w;
    while(scanf("%d %d %d", &N, &S, &K) != EOF) {
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i < N; ++i) {
            scanf("%d %d %d", &u, &v, &w);
            add_edge(u, v, w);
        dfs(S, -1);
        printf("%I64d\n", dp[S][K]);
    return 0;
个人分类: HDU
上一篇HDU 1011 Starship Troopers
下一篇Codeforces 557C Arthur and Table
想对作者说点什么? 我来说一句