重生之我在币圈当大佬19 孙成宇登场

星火测试网的成功和V神的认可,像一块投入湖面的石头,在圈内荡开了一圈涟漪。但这圈涟漪还没来得及扩散多远,就被另一场声势浩大、刻意制造的浪潮声给盖了过去。

京城一家五星级酒店的宴会厅,灯光璀璨,衣香鬓影。巨大的LED屏幕上闪烁着炫目的特效和英文标语:“Lumenix - Ignite the Future of Entertainment on Blockchain”(澜界链 - 点燃区块链娱乐的未来)。空气里混合着香水、发胶和一种名为“野心”的燥热气息。

李牧是在公司那台破旧电脑上,点开这场发布会直播链接的。张墨挤在旁边,嘴里叼着根快化掉的冰棍。

镜头扫过台下,坐着不少面孔熟悉的二三线明星、网红、还有几家嗅觉灵敏的媒体记者。台上,一个穿着亮蓝色丝绒西装、头发梳得油光水滑的年轻男人,正握着话筒,以一种近乎表演的张力来回踱步。他语速极快,中英文夹杂,手势夸张。

“这就是那个孙成宇?”张墨含糊不清地问,“清华的那个?搞得跟明星出道似的。”

李牧没说话,只是盯着屏幕。那个人,太像了。那种浮夸的自信,那种对眼球经济近乎本能的操控感,还有那套将复杂技术包装成简单粗暴概念的娴熟手法……尽管这个平行世界里的他名字叫孙成宇,毕业于清华而非宾大,但李牧几乎可以肯定,内核就是同一个人——那个他前世就熟知的话题人物,孙宇晨的影子,或者说,另一种可能性下的本体。

孙成宇正在描绘他的蓝图:“……澜界Lumenix,不是另一个冷冰冰的技术协议!我们是生态,是潮流,是下一代互联网的娱乐巨舰!我们要让每个用户,都能在区块链上创造快乐,分享快乐,并且……赚取快乐!”

台下响起一阵配合的掌声和笑声。

“我们不谈那些艰深的PoW、PoS!”他挥挥手,做出一个摒弃的动作,脸上带着嫌弃的表情,“技术应该服务人性,而不是束缚人性!澜界链的交易速度,将达到每秒万笔级别!我们的共识机制,是革命性的‘娱乐证明’(Proof of Entertainment)!我们将彻底告别Gas费时代!”

张墨嗤笑一声:“扯淡吧,万笔?还娱乐证明?不就是DPoS变种,找几个节点当家奴么?忽悠谁呢。”

李牧依旧沉默。他知道孙成宇(或者说他印象中的那个原型)并非全然不懂技术,但他更擅长的是将技术术语剥离,包裹上华丽糖衣,贩卖给渴望快钱和噱头的人。他的目标受众,从来不是实验室里的极客。

发布会的高潮,是孙成宇宣布澜界基金会将拿出“数十亿”市值的代币,启动一个名为“光芒计划”的生态激励项目,招募全球的开发者、内容创作者、甚至是“社区快乐大使”。

一群穿着闪亮短裙、身材高挑的模特笑着走上台,手里拿着印有Lumenix Logo的道具,簇拥在孙成宇身边。快门声疯狂响起,闪光灯将现场映得如同白昼。孙成宇站在中间,左右拥抱,笑容灿烂,仿佛一位加冕的皇帝。

“看这排场,”张墨咂咂嘴,“咱那点融资款,够人家请这些模特吃顿饭吗?”

就在这时,屏幕上的孙成宇似乎是为了展示自己的亲民和幽默,话锋一转,提到了近期圈内的一点“小波澜”。

“最近啊,我也注意到国内有一些有趣的尝试。比如……叫什么来着?哦,星火链。”他做出一副努力回忆的样子,引得台下轻笑。

“我看了一下,技术嘛……嗯,很扎实,很极客。”他耸耸肩,语气里带着一种居高临下的调侃,“就像……就像一台上个世纪的老式机床,精度也许很高,但放在今天,未免有些……土鳖(Tǔ Bī)。”

他刻意用了一个中文词,字正腔圆,确保所有人都能听懂。

“哈哈哈哈哈!”台下爆发出更响亮的笑声和掌声,觉得孙老板真是太幽默、太敢说了。

孙成宇享受着这种效果,继续道:“我们都Web 3.0了,下一代互联网了,不能光埋头敲代码啊兄弟们!要抬头看天,要拥抱市场,要理解用户要的是快乐,是暴富的梦想,不是一堆看不懂的命令行!做个好玩又好赚的DApp游戏,比写一万行底层代码更有价值,对不对?”

“对!”台下有人起哄。

张墨气得差点把冰棍棍子捏断:“放屁!他懂个锤子!没有底层代码,他那破游戏跑得起来?还快乐证明,我看是忽悠证明!”

李牧放在鼠标上的手,无声地攥紧了,指节因为用力而微微发白。屏幕里那个人的笑容,那些刺耳的词语——“土鳖”、“极客”、“老式机床”——像一根根冰冷的针,精准地刺入他内心深处某个地方。

那里埋藏着他前世的憋屈——那个技术过硬却无人问津、被各种炒作和骗局碾压的底层码农的愤懑。也灼烧着他今生的野心——他想要证明技术本身的价值,而不仅仅是作为噱头的包装纸。

一种冰冷而纯粹的敌意,如同被彻底点燃的干柴,在他胸腔里轰然烧起。不仅仅是因为被嘲讽,更因为对方所代表的一切——那种对技术的轻蔑,对浮躁的追捧,对真正价值的扭曲——正是他前世今生都极度厌恶和想要击碎的东西。

屏幕里,孙成宇还在意气风发地演讲,灯光打在他身上,光彩夺目。

屏幕外,李牧缓缓松开握拳的手,眼神却变得像淬了火的刀子一样冷冽而坚硬。

他关掉了直播页面,嘈杂的声音瞬间消失,办公室里只剩下服务器沉闷的嗡鸣。

“墨哥。”

“啊?牧哥,你别听他放……”张墨还在愤愤不平。

“我们的主网,”李牧打断他,声音平静,却带着一种不容置疑的力量,“要更快上线。要更稳,更快,更强。”

他没有咆哮,没有咒骂,但张墨却莫名地打了个寒颤,他从李牧平静的语气下,听到了一种近乎恐怖的决心。

那个穿着蓝色丝绒西装的男人,在遥远的京城,仅仅用了短短几句话,就为自己点燃了一个或许他此刻还未曾真正意识到的、未来将无比致命的敌人。

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值