动态规划:选择dp及优化01背包问题

01背包

有 N件物品和一个容量是 V的背包。每件物品只能使用一次。

第 i件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数,N,V

,用空格隔开,分别表示物品数量和背包容积。

接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000

0<vi,wi≤1000

输入样例

4 5

1 2

2 4

3 4

4 5

输出样例:

8

解答

此思维导图来源(未标注来源的基本是自己画的,除非忘了):acwing:jasonlin

核心思想:从集合角度来分析DP问题

dp问题,在有限集合中求最值

为什么用dp?

因为集合中数量太多

dp为什么能解决数量太多的问题

用两个阶段,每次选出某种状态下最优解,不再穷举

一阶段状态表示

化零为整状态表示----不是一个元素一个元素枚举,每次枚举一类元素,化成子集,用一个状态来表示

状态表示f(i)分为:集合定位和集合属性

二阶段状态计算

状态计算,化整为零

例如需要求f(i),f(i)是最大值,然后我们只需要将f(i)划分成集合

判断每个子集的最大值,哪个更大,哪个就是所有集合最大值

子集一般满足两个原则(不遗漏,不重复),有时候可以重复,但一定不能遗漏

集合的划分依据:寻找最后一个不同点

dp问题很多种

选择dp,线性DP,区间DP

这题是选择DP

套用闫氏dp法

1.上回合的状态表示,使用状态计算,计算下回合的状态表示。

2.每步都选出最优解,通过上步最优解,算出下步最优解,从而降低时间复杂度,快速解决问题。

-----闫氏dp选择dp感悟总结

代码实现

#include<iostream>
#include<cmath>
using namespace std;
int u[1010],w[1010];
int f[1010][1010];
int main(){
    int N,V;
    cin>>N>>V;
    //读入价值和重量,i从1开始,防止双层循环内i-1越界   
    for(int i=1;i<=N;i++)scanf("%d %d",&u[i],&w[i]);
    //遍历每种状态表示下的集合属性(最大价值)
    for(int i=1;i<=N;i++){//从1开始,前0个数无意义,而且会造成i-1越界
    //容量从0开始,每次内层循环,算出前i个数在容量为V时的最大价值
    //这个数是f[i][V],则f[N][V],是N个数在V容量内最大价值
        for(int j=0;j<=V;j++){
            //和前缀和有点像,前缀和保存的是和,f[i][j]保存的是最大价值
            //在上轮外层循环时得出过f[i-1][j]的最大价值,直接取用
            f[i][j]=f[i-1][j];
            //先判断,避免目前容量无法存储i的体积
            //max参数内的f[i][j]是f[i-1][j],然后和f[i-1][j-u[i]]+w[i]比较
            //f[i-1][j-u[i]]是去掉i的体积后,选前i个数的最大价值选法的价值
            //-u[i]是留出来添加i的容量,然后+w[i]即是加上i的价值
            //f[i-1][j]和f[i-1][j-u[i]]+w[i]比较,大的那个就是f[i][j]的最大价值
            if(j>=u[i])f[i][j]=max(f[i][j],f[i-1][j-u[i]]+w[i]);
        }
    }
    //参照13,14行注释,输出结果
    cout<<f[N][V];
    return 0;
}

优化

思路

在时间复杂度上已经几乎无法优化,但是在空间复杂度上可以

把f[1010][1010]优化成一维数组,每次我们循环只需要f[i][*]和f[i-1][*]

不需要把所有f[i]都存下来

注释展示思路
#include<iostream>
#include<cmath>
using namespace std;
int u[1010],w[1010];
int f[1010][1010];
int main(){
    int N,V;
    cin>>N>>V;
    for(int i=1;i<=N;i++)scanf("%d %d",&u[i],&w[i]);
    for(int i=1;i<=N;i++){
        for(int j=0;j<=V;j++)
        {
            //优化成一维,f[i][j]=f[i-1][j]就变成了f[j]=f[j]
            //等号右边的是还没更新的f[j],这个f[j]是上次i循环里的
            //那么对于这次i循环,它等价于f[i-1][j]
            //优化为f[j]=f[j];
            f[i][j]=f[i-1][j];
            //下面的f[i][j]已经在上面证明过==f[i-1][j]
            //所以只需要优化f[i-1][j-u[i]]
            //f[j-u[i]]对应的值是f[i][j-u[i]],因为j-u[i]<j
            //此时f[j-u[i]]已经被本次i循环遍历过了,所以是[i][j-u[i]]
            //但是如果我们把内层循环改成从大到小遍历,f[j-u[i]]就是在f[j]后更新
            //f[j-u[i]]就还未更新,他的值还是f[i-1][j-u[i]](上次i循环内的f[j-u[i]])
            //所以我们把内循环优化成从大到小遍历即可
            //因为本身不需要本次内循环的小j,推大j,只需要上次i-1的小j推大j
            //所以对结果没影响
            if(j>=u[i])f[i][j]=max(f[i][j],f[i-1][j-u[i]]+w[i]);
        }
        
    }
    cout<<f[V];
    return 0;
}
代码实现
#include<iostream>
#include<cmath>
using namespace std;
int u[1010],w[1010];
int f[1010];
int main(){
    int N,V;
    cin>>N>>V;
    for(int i=1;i<=N;i++)scanf("%d %d",&u[i],&w[i]);
    for(int i=1;i<=N;i++){
        for(int j=V;j>=0;j--)
        {
            //优化成一维,f[i][j]=f[i-1][j]就变成了f[j]=f[j]
            //等号右边的是还没更新的f[j],这个f[j]是上次i循环里的
            //那么对于这次i循环,它等价于f[i-1][j]
            //优化为f[j]=f[j];
            f[j]=f[j];
            //下面的f[i][j]已经在上面证明过==f[i-1][j]
            //所以只需要优化f[i-1][j-u[i]]
            //f[j-u[i]]对应的值是f[i][j-u[i]],因为j-u[i]<j
            //此时f[j-u[i]]已经被本次i循环遍历过了,所以是[i][j-u[i]]
            //但是如果我们把内层循环改成从大到小遍历,f[j-u[i]]就是在f[j]后更新
            //f[j-u[i]]就还未更新,他的值还是f[i-1][j-u[i]](上次i循环内的f[j-u[i]])
            //所以我们把内循环优化成从大到小遍历即可
            //因为本身不需要本次内循环的小j,推大j,只需要上次i-1的小j推大j
            //所以对结果没影响
            if(j>=u[i])f[j]=max(f[j],f[j-u[i]]+w[i]);
        }
        
    }
    cout<<f[V];
    return 0;
}
还能优化一点代码长度

十七行f[j]=f[j];无效代码,不用写

27行if判断可以写入for循环

#include<iostream>
#include<cmath>
using namespace std;
int u[1010],w[1010];
int f[1010];
int main(){
    int N,V;
    cin>>N>>V;
    for(int i=1;i<=N;i++)scanf("%d %d",&u[i],&w[i]);
    for(int i=1;i<=N;i++)
        for(int j=V;j-u[i]>=0;j--)
            f[j]=max(f[j],f[j-u[i]]+w[i]);
    cout<<f[V];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值