OpenJudge_P3531 判断整除(DP)

总时间限制: 1000ms 内存限制: 65536kB 
描述 
一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列: 
(+1) + (+2) + (+4) = 7 
(+1) + (+2) + (-4) = -1 
(+1) + (-2) + (+4) = 3 
(+1) + (-2) + (-4) = -5 
(-1) + (+2) + (+4) = 5 
(-1) + (+2) + (-4) = -3 
(-1) + (-2) + (+4) = 1 
(-1) + (-2) + (-4) = -7 
所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。

输入 
输入的第一行包含两个数:N(2 < N < 10000)和k(2 < k< 100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。 
输出 
如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)

样例输入 
3 2 
1 2 4

样例输出 

NO

#include<bits/stdc++.h>
using namespace std;
const int N=105+7;
const int inf=0x3f3f3f3f;
const int mod=1000000007;
int n,m,k,flag,b=0;
int f[2][N];
int mods(int x)
{
    return x>=0?x%k:x%k+k;
}
int main()
{
//    freopen("C:\\Users\\lenovo\\Desktop\\1.in","r",stdin);
    int t,tt=0,x;
    scanf("%d%d",&n,&k); flag=1;

    while(n--)
    {
        scanf("%d",&x); x=mods(x);
        memset(f[b],0,sizeof f[b]);
        
        if(flag) flag=0,f[b][mods(x)]=f[b][mods((-1)*x)]=1;
        
        for(int i=0;i<k;i++)
            if(f[!b][i])
            f[b][mods(i+x)]=f[b][mods(i-x)]=1;
        b=!b;
    }
    printf("%s\n",f[!b][0]?"YES":"NO");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值