记录第一次实战开发

新手开发经验分享:代码规范与最佳实践

记录一下,第一次开发给我的一些总结

  • 代码一定要写注释,尤其像我这种新手,不能保证,一次性提交运行没有bug,所以,一定要写注释,按照规范书写注释
  • 这次是写一个接口,对于企业级开发这种,一定要有配置文件,但如果没有配置文件,在服务器中启动,就会是非常难弄的一件事,会导致,换了一个环境,导致各种代码传参都需要改变,所以,配置文件是必须的。
  • 将项目进行分层,尽管有些框架并没有严格要求层级,但是写代码时,一定要按照分层架构来写,比如springmvc是mvc结构,django是mvt结构,这些写起来不需要想我们要使用什么样的结构,但是如果使用gin框架,他是没有限制你的分层结构的,所以,我们需要想,使用哪种结构,但说到底,其实都差不多
  • 代码的复用,这个很重要,能让你省好多代码,第一次开发没经验,代码复用率不高,导致代码很多。改起来也很麻烦
  • 对于go来说,高并发是它的优点,所以,我们写代码实现功能时,尽量要突出它的优点,高并发。
  • 使用一些目前很火的开发软件,比如git版本控制器,等等,可以加快我们的开发速度,有些软件也可以让我们不再受电脑环境的影响,代码跑不起来的困惑。
内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值