深度学习训练营P9:YOLOv5-Backbone模块实现

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

 

前期准备和数据读取

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore")            
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

import os,PIL,random,pathlib
data_dir = './9-data/'
data_dir = pathlib.Path(data_dir)
data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames
['cloudy', 'rain', 'shine', 'sunrise']
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./9-data/",transform=train_transforms)
total_data.class_to_idx
{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

模型搭建

import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
    
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
"""
这个是YOLOv5, 6.0版本的主干网络,这里进行复现
(注:有部分删改,详细讲解将在后续进行展开)
"""
class YOLOv5_backbone(nn.Module):
    def __init__(self):
        super(YOLOv5_backbone, self).__init__()
        
        self.Conv_1 = Conv(3, 64, 3, 2, 2) 
        self.Conv_2 = Conv(64, 128, 3, 2) 
        self.C3_3   = C3(128,128)
        self.Conv_4 = Conv(128, 256, 3, 2) 
        self.C3_5   = C3(256,256)
        self.Conv_6 = Conv(256, 512, 3, 2) 
        self.C3_7   = C3(512,512)
        self.Conv_8 = Conv(512, 1024, 3, 2) 
        self.C3_9   = C3(1024, 1024)
        self.SPPF   = SPPF(1024, 1024, 5)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv_1(x)
        x = self.Conv_2(x)
        x = self.C3_3(x)
        x = self.Conv_4(x)
        x = self.C3_5(x)
        x = self.Conv_6(x)
        x = self.C3_7(x)
        x = self.Conv_8(x)
        x = self.C3_9(x)
        x = self.SPPF(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = YOLOv5_backbone().to(device)
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 113, 113]           1,728
       BatchNorm2d-2         [-1, 64, 113, 113]             128
              SiLU-3         [-1, 64, 113, 113]               0
              Conv-4         [-1, 64, 113, 113]               0
            Conv2d-5          [-1, 128, 57, 57]          73,728
       BatchNorm2d-6          [-1, 128, 57, 57]             256
              SiLU-7          [-1, 128, 57, 57]               0
              Conv-8          [-1, 128, 57, 57]               0
            Conv2d-9           [-1, 64, 57, 57]           8,192
      BatchNorm2d-10           [-1, 64, 57, 57]             128
             SiLU-11           [-1, 64, 57, 57]               0
             Conv-12           [-1, 64, 57, 57]               0
           Conv2d-13           [-1, 64, 57, 57]           4,096
      BatchNorm2d-14           [-1, 64, 57, 57]             128
             SiLU-15           [-1, 64, 57, 57]               0
             Conv-16           [-1, 64, 57, 57]               0
           Conv2d-17           [-1, 64, 57, 57]          36,864
      BatchNorm2d-18           [-1, 64, 57, 57]             128
             SiLU-19           [-1, 64, 57, 57]               0
             Conv-20           [-1, 64, 57, 57]               0
       Bottleneck-21           [-1, 64, 57, 57]               0
           Conv2d-22           [-1, 64, 57, 57]           8,192
      BatchNorm2d-23           [-1, 64, 57, 57]             128
             SiLU-24           [-1, 64, 57, 57]               0
             Conv-25           [-1, 64, 57, 57]               0
           Conv2d-26          [-1, 128, 57, 57]          16,384
      BatchNorm2d-27          [-1, 128, 57, 57]             256
             SiLU-28          [-1, 128, 57, 57]               0
             Conv-29          [-1, 128, 57, 57]               0
               C3-30          [-1, 128, 57, 57]               0
           Conv2d-31          [-1, 256, 29, 29]         294,912
      BatchNorm2d-32          [-1, 256, 29, 29]             512
             SiLU-33          [-1, 256, 29, 29]               0
             Conv-34          [-1, 256, 29, 29]               0
           Conv2d-35          [-1, 128, 29, 29]          32,768
      BatchNorm2d-36          [-1, 128, 29, 29]             256
             SiLU-37          [-1, 128, 29, 29]               0
             Conv-38          [-1, 128, 29, 29]               0
           Conv2d-39          [-1, 128, 29, 29]          16,384
      BatchNorm2d-40          [-1, 128, 29, 29]             256
             SiLU-41          [-1, 128, 29, 29]               0
             Conv-42          [-1, 128, 29, 29]               0
           Conv2d-43          [-1, 128, 29, 29]         147,456
      BatchNorm2d-44          [-1, 128, 29, 29]             256
             SiLU-45          [-1, 128, 29, 29]               0
             Conv-46          [-1, 128, 29, 29]               0
       Bottleneck-47          [-1, 128, 29, 29]               0
           Conv2d-48          [-1, 128, 29, 29]          32,768
      BatchNorm2d-49          [-1, 128, 29, 29]             256
             SiLU-50          [-1, 128, 29, 29]               0
             Conv-51          [-1, 128, 29, 29]               0
           Conv2d-52          [-1, 256, 29, 29]          65,536
      BatchNorm2d-53          [-1, 256, 29, 29]             512
             SiLU-54          [-1, 256, 29, 29]               0
             Conv-55          [-1, 256, 29, 29]               0
               C3-56          [-1, 256, 29, 29]               0
           Conv2d-57          [-1, 512, 15, 15]       1,179,648
      BatchNorm2d-58          [-1, 512, 15, 15]           1,024
             SiLU-59          [-1, 512, 15, 15]               0
             Conv-60          [-1, 512, 15, 15]               0
           Conv2d-61          [-1, 256, 15, 15]         131,072
      BatchNorm2d-62          [-1, 256, 15, 15]             512
             SiLU-63          [-1, 256, 15, 15]               0
             Conv-64          [-1, 256, 15, 15]               0
           Conv2d-65          [-1, 256, 15, 15]          65,536
      BatchNorm2d-66          [-1, 256, 15, 15]             512
             SiLU-67          [-1, 256, 15, 15]               0
             Conv-68          [-1, 256, 15, 15]               0
           Conv2d-69          [-1, 256, 15, 15]         589,824
      BatchNorm2d-70          [-1, 256, 15, 15]             512
             SiLU-71          [-1, 256, 15, 15]               0
             Conv-72          [-1, 256, 15, 15]               0
       Bottleneck-73          [-1, 256, 15, 15]               0
           Conv2d-74          [-1, 256, 15, 15]         131,072
      BatchNorm2d-75          [-1, 256, 15, 15]             512
             SiLU-76          [-1, 256, 15, 15]               0
             Conv-77          [-1, 256, 15, 15]               0
           Conv2d-78          [-1, 512, 15, 15]         262,144
      BatchNorm2d-79          [-1, 512, 15, 15]           1,024
             SiLU-80          [-1, 512, 15, 15]               0
             Conv-81          [-1, 512, 15, 15]               0
               C3-82          [-1, 512, 15, 15]               0
           Conv2d-83           [-1, 1024, 8, 8]       4,718,592
      BatchNorm2d-84           [-1, 1024, 8, 8]           2,048
             SiLU-85           [-1, 1024, 8, 8]               0
             Conv-86           [-1, 1024, 8, 8]               0
           Conv2d-87            [-1, 512, 8, 8]         524,288
      BatchNorm2d-88            [-1, 512, 8, 8]           1,024
             SiLU-89            [-1, 512, 8, 8]               0
             Conv-90            [-1, 512, 8, 8]               0
           Conv2d-91            [-1, 512, 8, 8]         262,144
      BatchNorm2d-92            [-1, 512, 8, 8]           1,024
             SiLU-93            [-1, 512, 8, 8]               0
             Conv-94            [-1, 512, 8, 8]               0
           Conv2d-95            [-1, 512, 8, 8]       2,359,296
      BatchNorm2d-96            [-1, 512, 8, 8]           1,024
             SiLU-97            [-1, 512, 8, 8]               0
             Conv-98            [-1, 512, 8, 8]               0
       Bottleneck-99            [-1, 512, 8, 8]               0
          Conv2d-100            [-1, 512, 8, 8]         524,288
     BatchNorm2d-101            [-1, 512, 8, 8]           1,024
            SiLU-102            [-1, 512, 8, 8]               0
            Conv-103            [-1, 512, 8, 8]               0
          Conv2d-104           [-1, 1024, 8, 8]       1,048,576
     BatchNorm2d-105           [-1, 1024, 8, 8]           2,048
            SiLU-106           [-1, 1024, 8, 8]               0
            Conv-107           [-1, 1024, 8, 8]               0
              C3-108           [-1, 1024, 8, 8]               0
          Conv2d-109            [-1, 512, 8, 8]         524,288
     BatchNorm2d-110            [-1, 512, 8, 8]           1,024
            SiLU-111            [-1, 512, 8, 8]               0
            Conv-112            [-1, 512, 8, 8]               0
       MaxPool2d-113            [-1, 512, 8, 8]               0
       MaxPool2d-114            [-1, 512, 8, 8]               0
       MaxPool2d-115            [-1, 512, 8, 8]               0
          Conv2d-116           [-1, 1024, 8, 8]       2,097,152
     BatchNorm2d-117           [-1, 1024, 8, 8]           2,048
            SiLU-118           [-1, 1024, 8, 8]               0
            Conv-119           [-1, 1024, 8, 8]               0
            SPPF-120           [-1, 1024, 8, 8]               0
          Linear-121                  [-1, 100]       6,553,700
            ReLU-122                  [-1, 100]               0
          Linear-123                    [-1, 4]             404
================================================================
Total params: 21,729,592
Trainable params: 21,729,592
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 137.59
Params size (MB): 82.89
Estimated Total Size (MB): 221.06

训练模型

训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

正式训练

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 60

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(best_model.state_dict(), PATH)

print('Done')
Epoch: 1, Train_acc:53.7%, Train_loss:1.151, Test_acc:65.8%, Test_loss:0.815, Lr:1.00E-04
Epoch: 2, Train_acc:63.6%, Train_loss:0.898, Test_acc:75.1%, Test_loss:0.549, Lr:1.00E-04
Epoch: 3, Train_acc:69.2%, Train_loss:0.780, Test_acc:71.6%, Test_loss:0.692, Lr:1.00E-04
Epoch: 4, Train_acc:71.7%, Train_loss:0.657, Test_acc:73.8%, Test_loss:0.830, Lr:1.00E-04
Epoch: 5, Train_acc:76.4%, Train_loss:0.586, Test_acc:84.4%, Test_loss:0.440, Lr:1.00E-04
Epoch: 6, Train_acc:79.9%, Train_loss:0.521, Test_acc:81.8%, Test_loss:0.553, Lr:1.00E-04
Epoch: 7, Train_acc:79.7%, Train_loss:0.536, Test_acc:84.0%, Test_loss:0.464, Lr:1.00E-04
Epoch: 8, Train_acc:84.9%, Train_loss:0.429, Test_acc:80.9%, Test_loss:0.481, Lr:1.00E-04
Epoch: 9, Train_acc:85.3%, Train_loss:0.403, Test_acc:89.3%, Test_loss:0.295, Lr:1.00E-04
Epoch:10, Train_acc:86.9%, Train_loss:0.368, Test_acc:88.9%, Test_loss:0.329, Lr:1.00E-04
Epoch:11, Train_acc:87.8%, Train_loss:0.346, Test_acc:81.8%, Test_loss:0.730, Lr:1.00E-04
Epoch:12, Train_acc:88.9%, Train_loss:0.318, Test_acc:95.6%, Test_loss:0.165, Lr:1.00E-04
Epoch:13, Train_acc:89.2%, Train_loss:0.293, Test_acc:93.8%, Test_loss:0.219, Lr:1.00E-04
Epoch:14, Train_acc:92.6%, Train_loss:0.222, Test_acc:90.2%, Test_loss:0.260, Lr:1.00E-04
Epoch:15, Train_acc:89.8%, Train_loss:0.249, Test_acc:95.6%, Test_loss:0.185, Lr:1.00E-04
Epoch:16, Train_acc:92.8%, Train_loss:0.193, Test_acc:89.3%, Test_loss:0.315, Lr:1.00E-04
Epoch:17, Train_acc:93.0%, Train_loss:0.191, Test_acc:89.8%, Test_loss:0.279, Lr:1.00E-04
Epoch:18, Train_acc:94.1%, Train_loss:0.151, Test_acc:92.9%, Test_loss:0.239, Lr:1.00E-04
Epoch:19, Train_acc:96.1%, Train_loss:0.118, Test_acc:90.7%, Test_loss:0.271, Lr:1.00E-04
Epoch:20, Train_acc:93.7%, Train_loss:0.205, Test_acc:93.8%, Test_loss:0.203, Lr:1.00E-04
Epoch:21, Train_acc:93.7%, Train_loss:0.141, Test_acc:91.6%, Test_loss:0.228, Lr:1.00E-04
Epoch:22, Train_acc:94.8%, Train_loss:0.123, Test_acc:94.2%, Test_loss:0.181, Lr:1.00E-04
Epoch:23, Train_acc:95.9%, Train_loss:0.117, Test_acc:92.4%, Test_loss:0.238, Lr:1.00E-04
Epoch:24, Train_acc:97.3%, Train_loss:0.089, Test_acc:89.8%, Test_loss:0.342, Lr:1.00E-04
Epoch:25, Train_acc:96.6%, Train_loss:0.088, Test_acc:88.4%, Test_loss:0.310, Lr:1.00E-04
Epoch:26, Train_acc:93.7%, Train_loss:0.204, Test_acc:90.2%, Test_loss:0.275, Lr:1.00E-04
Epoch:27, Train_acc:96.9%, Train_loss:0.085, Test_acc:92.0%, Test_loss:0.236, Lr:1.00E-04
Epoch:28, Train_acc:97.7%, Train_loss:0.062, Test_acc:92.0%, Test_loss:0.247, Lr:1.00E-04
Epoch:29, Train_acc:97.1%, Train_loss:0.091, Test_acc:92.4%, Test_loss:0.221, Lr:1.00E-04
Epoch:30, Train_acc:98.1%, Train_loss:0.044, Test_acc:91.1%, Test_loss:0.271, Lr:1.00E-04
Epoch:31, Train_acc:97.2%, Train_loss:0.090, Test_acc:94.7%, Test_loss:0.234, Lr:1.00E-04
Epoch:32, Train_acc:98.7%, Train_loss:0.041, Test_acc:94.7%, Test_loss:0.203, Lr:1.00E-04
Epoch:33, Train_acc:98.8%, Train_loss:0.056, Test_acc:91.6%, Test_loss:0.325, Lr:1.00E-04
Epoch:34, Train_acc:96.7%, Train_loss:0.088, Test_acc:94.2%, Test_loss:0.198, Lr:1.00E-04
Epoch:35, Train_acc:97.9%, Train_loss:0.068, Test_acc:93.8%, Test_loss:0.191, Lr:1.00E-04
Epoch:36, Train_acc:98.4%, Train_loss:0.037, Test_acc:91.1%, Test_loss:0.351, Lr:1.00E-04
Epoch:37, Train_acc:98.4%, Train_loss:0.055, Test_acc:91.6%, Test_loss:0.320, Lr:1.00E-04
Epoch:38, Train_acc:98.9%, Train_loss:0.040, Test_acc:93.3%, Test_loss:0.265, Lr:1.00E-04
Epoch:39, Train_acc:98.3%, Train_loss:0.042, Test_acc:88.9%, Test_loss:0.379, Lr:1.00E-04
Epoch:40, Train_acc:96.6%, Train_loss:0.082, Test_acc:91.6%, Test_loss:0.300, Lr:1.00E-04
Epoch:41, Train_acc:94.9%, Train_loss:0.155, Test_acc:91.1%, Test_loss:0.365, Lr:1.00E-04
Epoch:42, Train_acc:98.2%, Train_loss:0.060, Test_acc:88.9%, Test_loss:0.389, Lr:1.00E-04
Epoch:43, Train_acc:99.0%, Train_loss:0.025, Test_acc:93.3%, Test_loss:0.210, Lr:1.00E-04
Epoch:44, Train_acc:98.1%, Train_loss:0.040, Test_acc:92.0%, Test_loss:0.258, Lr:1.00E-04
Epoch:45, Train_acc:99.4%, Train_loss:0.022, Test_acc:94.7%, Test_loss:0.196, Lr:1.00E-04
Epoch:46, Train_acc:99.9%, Train_loss:0.007, Test_acc:95.1%, Test_loss:0.206, Lr:1.00E-04
Epoch:47, Train_acc:99.9%, Train_loss:0.007, Test_acc:96.0%, Test_loss:0.158, Lr:1.00E-04
Epoch:48, Train_acc:96.7%, Train_loss:0.088, Test_acc:94.7%, Test_loss:0.230, Lr:1.00E-04
Epoch:49, Train_acc:97.6%, Train_loss:0.077, Test_acc:93.3%, Test_loss:0.228, Lr:1.00E-04
Epoch:50, Train_acc:98.1%, Train_loss:0.060, Test_acc:90.7%, Test_loss:0.311, Lr:1.00E-04
Epoch:51, Train_acc:97.3%, Train_loss:0.082, Test_acc:90.7%, Test_loss:0.285, Lr:1.00E-04
Epoch:52, Train_acc:98.8%, Train_loss:0.045, Test_acc:91.6%, Test_loss:0.343, Lr:1.00E-04
Epoch:53, Train_acc:97.9%, Train_loss:0.076, Test_acc:92.0%, Test_loss:0.265, Lr:1.00E-04
Epoch:54, Train_acc:99.1%, Train_loss:0.032, Test_acc:94.7%, Test_loss:0.250, Lr:1.00E-04
Epoch:55, Train_acc:100.0%, Train_loss:0.007, Test_acc:95.1%, Test_loss:0.296, Lr:1.00E-04
Epoch:56, Train_acc:99.9%, Train_loss:0.009, Test_acc:95.6%, Test_loss:0.214, Lr:1.00E-04
Epoch:57, Train_acc:99.7%, Train_loss:0.008, Test_acc:95.6%, Test_loss:0.236, Lr:1.00E-04
Epoch:58, Train_acc:99.6%, Train_loss:0.012, Test_acc:92.9%, Test_loss:0.352, Lr:1.00E-04
Epoch:59, Train_acc:100.0%, Train_loss:0.003, Test_acc:95.1%, Test_loss:0.284, Lr:1.00E-04
Epoch:60, Train_acc:99.7%, Train_loss:0.006, Test_acc:93.3%, Test_loss:0.295, Lr:1.00E-04
Done

结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

模型评估

# 将参数加载到model当中
best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
(0.96, 0.15804262260406718)

总结

YOLO中Backbone模块简介:

1. Backbone模块的功能

Backbone模块的主要功能是从输入图像中提取有用的特征。这些特征随后会被用于预测物体的类别和位置。在深度学习中,特征提取通常通过一系列的卷积层、激活层、池化层等来完成,而Backbone模块就是由这些层构成的。

2. 常用的Backbone

在YOLO的不同版本中,Backbone有所变化。以下是一些常见的选择:

  • Darknet-53: 这是在YOLOv3中使用的Backbone,由53个卷积层组成,使用了残差连接以增强训练深度网络的能力。
  • CSPDarknet-53: 在YOLOv4中引入,通过引入跨阶段部分网络(CSP)来减少计算的重复,提高模型效率。
  • Darknet-19: 在YOLOv2中使用的较轻量级Backbone,包含19个卷积层。

3. 高级特征和创新

  • 残差连接: 如在Darknet-53中使用,帮助网络在很深的情况下仍然能有效地训练,通过允许梯度直接流过网络的某些部分来减少训练中的梯度消失问题。
  • SPP (Spatial Pyramid Pooling): 在YOLOv4中使用,能够让网络适应不同尺寸的输入图像,提取更具代表性的特征。
  • CSP: 分解特征图的计算,优化内存使用并提升速度。

4. 选择Backbone的考虑因素

选择Backbone时,需要考虑模型的效率和精度的平衡。例如,更深的网络可能提供更好的特征表达能力,但同时会增加计算成本和降低实时性能。反之,较轻量的网络虽然快速但可能牺牲精度。

 Backbone结构解析:

1. 标准卷积层(Conv)

使用卷积层进行特征提取,每个卷积层后面接一个Batch Normalization层和一个SiLU激活函数。这种配置有助于网络学习更复杂的特征表示,同时保持激活函数的非线性。

2. 残差块(Bottleneck)

这是一种残差连接的实现,允许输入跳过某些层直接连接到后面的层。这有助于缓解梯度消失问题,并使得网络能够更深入地学习而不丢失重要的输入信息。

3. CSP Bottleneck(C3)

C3模块是一种CSPNet的变体,用于降低计算成本和增强网络的学习能力。它将输入分成两部分,一部分直接通过,另一部分通过一系列的Bottleneck块,然后将它们合并回来。这种设计有助于减少参数数量和提高信息流的效率。

4. 空间金字塔池化(SPPF)

空间金字塔池化快速版(SPPF)是为了提高计算效率和处理不同尺寸的输入而设计的。它通过在不同尺度上执行最大池化,然后将这些特征图拼接起来,从而捕获不同尺度的上下文信息。

分类

这个Backbone模块的末尾包含一个分类器,该分类器通过全连接层对特征进行最终的处理,用于分类或其他下游任务。

总结

这个Backbone属于现代、高级的神经网络架构类,特别是针对复杂的视觉识别任务如物体检测。它结合了多种技术来优化性能和效率,适用于需要快速且精确处理的场合。通过引入残差连接、CSP结构和SPPF,这种架构能够有效处理深度网络常见的问题,如梯度消失和计算效率,同时保持或提高性能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值