Floyd判圈算法(Floyd Cycle Detection)

算法 专栏收录该内容
1 篇文章 0 订阅

Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm)。该算法由美国科学家罗伯特·弗洛伊德发明,是一个可以在有限状态机、迭代函数或者链表上判断是否存在环,求出该环的起点与长度的算法。

如果有限状态机、迭代函数或者链表上存在环,那么在某个环上以不同速度前进的2个指针必定会在某个时刻相遇。同时显然地,如果从同一个起点(即使这个起点不在某个环上)同时开始以不同速度前进的2个指针最终相遇,那么可以判定存在一个环,且可以求出2者相遇处所在的环的起点与长度。

算法描述

如果有限状态机、迭代函数或者链表存在环,那么一定存在一个起点可以到达某个环的某处(这个起点也可以在某个环上)。
示意图
初始状态下,假设已知某个起点节点为节点S。现设两个指针t和h,将它们均指向S。

接着,同时让t和h往前推进,但是二者的速度不同:t每前进1步,h前进2步。只要二者都可以前进而且没有相遇,就如此保持二者的推进。当h无法前进,即到达某个没有后继的节点时,就可以确定从S出发不会遇到环。反之当t与h再次相遇时,就可以确定从S出发一定会进入某个环,设其为环C。

如果确定了存在某个环,就可以求此环的起点与长度。

计算环长度

上述算法刚判断出存在环C时,显然t和h位于同一节点,设其为节点M。显然,仅需令h不动,而t不断推进,最终又会返回节点M,统计这一次t推进的步数,显然这就是环C的长度。

计算环起点

为了求出环C的起点,只要令h仍位于节点M,而令t返回起点节点S。随后,同时让t和h往前推进,且保持二者的速度相同:t每前进1步,h前进1步。持续该过程直至t与h再一次相遇,设此次相遇时位于同一节点P,则节点P即为从节点S出发所到达的环C的第一个节点,即环C的一个起点。

链表起点为节点S,环起点为节点P,t和h相遇时位于同一节点M,S和P之间的距离为p,P和M之间的距离为m,环长为C,这里两点之间的距离是指从一点走多少步可以到点另外一点。

当t和h相遇时,

t走的步数,step = p + m + a * C,a表示相遇时t走的圈数

h走的步数,2 * step = p + m + b * C,b表示相遇时h走的圈数

两者相减:step = (b - a) * C = p + m + a * C,由此可知t走的步数是环C的倍数,即 p + m 刚好是环长度C的倍数。

t和h在M处相遇,为了计算环C的起点,令h仍位于节点M,而令t返回起点S,随后,同时让t和h往前推进,且保持两者的速度相同:t每前进1步,h前进1步。持续该过程直至t与h再一次相遇,则它们此次相遇时一定位于环的起始节点P。为什么它们此次相遇时一定在环起始节点呢?

t走了p步到达P,h在环C上p步在哪呢?h从M处出发走了p步,相对于环起始位置,h走过的距离是 m + p,而m + p刚好是环长度C的倍数,即h此时也位于环起始节点处,即t和h在P处相遇。据此就可以计算出环起始节点的位置。
算法复杂度
时间复杂度

注意到当指针t到达环C的一个起点节点P时(此时指针h显然在环C上),之后指针t最多仅可能走1圈。若设节点S到P距离为m,环C的长度为n,则时间复杂度为O(m+n),是线性时间的算法。

空间复杂度

仅需要创立指针t、指针h,保存环长n、环的一个起点P。空间复杂度为O(1),是常数空间的算法。
原文链接:https://blog.csdn.net/javasus/article/details/50015687

c++实现代码

#include <bits/stdc++.h>
using namespace std;
int n ;  //有n个节点
int len ; //循环节的长度
int start ; //链路的初始节点
int pos ; //循环节的初始节点 
int val ; //初始节点的值 
int m ; 	//在链路相遇的节点 
int slow,fast; //两个速度指针 
int f(int p){
	int next;
	//构造下一步方法
	return next; 
} 
bool floydcycle(int start, int len, int pos, int val){
	//	是否存在循环节 
	slow = f(start) ;
	fast =f( f(start) );
	int cnt=1;
	while(slow != fast && cnt < n){
		slow = f(slow);
		fast = f ( f(fast) );
		cnt++;
	}
	if(slow != fast) return false;
	// 循环节长度 
	len = 0;
	do{ 
		slow = f(slow);
		len++;
	}while(slow != fast);
	//循环节起始位置
	slow = 0;
	int p=0;
	while(slow != fast){
		slow = f(slow);
		fast = f(fast);
		++p;
	} 
	pos = p ;
	val = slow;
}
int main(){
	floydcycle( start, len, pos, val);
}

leetcode Happy number:

class Solution {
public:
    bool isHappy(int n) {
        int low=n,fast=n;
        do{
            low = calculateDigit(low);
            fast = calculateDigit(fast);
            fast = calculateDigit(fast);
            if(fast==1)
                return true;
        }while(low!=fast);
        return false;
    }
    int calculateDigit(int n){
        int sum=0,tem;
        while(n){
            tem = n%10;
            sum+=tem*tem;
            n/=10;
        }
        return sum;
    }
};
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

参与评论
请先登录 后发表评论~
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值