1.什么是机器学习
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
上述为百度百科定义,而在现实生活中,我们主要会碰到两类问题。一类是我们知道怎么去通过算法将输入转化为输出,通过学习此类模式得到相应输出结果。另一类是寻找不到此类模式,通过深度学习去做。
- 给定一定的输入,通过施加一定条件或算法,得到最终的输出,类似于下图模式。

- 以字符识别为例,输入的是手写数字图片,输出0-9字符串,我们并不知道怎么把输入转换成输出,因为手写体因人而异,随机性很大。换句话说就是我们缺的是知识如何映射,不过幸运的是我们有实例数据,而把这个知识通过机器学出来的过程叫做机器学习。

2.机器学习体系概括
机器学习包含多交叉学科,同时也在很多方面得到应用,如自然语言处理、图像处理、数据挖掘、推荐系统领域等。机器学习包含监督学习、无监督学习、半监督学习、强化学习、深度学习

本文介绍了机器学习的基本概念,包括监督学习和无监督学习,并详细阐述了回归分析和分类在监督学习中的作用。强调了无监督学习中的聚类方法。文章还提到了学习机器学习所需的数学知识和Python编程基础,并预告了后续将分享的各种机器学习算法教程。
最低0.47元/天 解锁文章
15万+

被折叠的 条评论
为什么被折叠?



