1.线性回归分析( Linear Regression Analysis)
线性回归分析(Regression Analysis):其数据集是给定一个函数和他的一些坐标点,然后通过回归分析的算法,来估计原函数的模型,求得最符合这些数据集的函数解析式。然后我们就可以用来预估未知数据,输入一个自变量便会根据这个模型解析式输出因变量,这些自变量就是特征向量,因变量即为标签,而且标签的值是建立在连续范围内的。
通俗来讲就是我们在做数学题的时候,解未知数的方法。假如给定自变量和函数,通过函数处理自变量,然后获得函数的解。而回归分析便是相当于给定自变量和函数的解,然后去求函数。如下图所示,我们已经知道红色点坐标,然后回归得到直线,回归分析属于监督学习。

上图只是简单的一元线性分析,回归后我们可以得到如 f ( x ) = a ∗ x + b f(x)=a*x+b f(x)=a∗x+b的函数表达式,但更多情况下我们是求解多元线性回归问题,那应该如何解决呢。
2.模型表达
建立数学模型之前,我们先定义如下变量。
- x i x_i xi表示输入数据(Feature)
- y i y_i yi表示输出数据(Target)
- ( x i , y i ) (x_i,y_i) (xi,yi)表示一组训练数据(Training example)
- m表示训练数据的个数
- n表示特征数量
监督学习目标便是根据给定的训练数据,可以得到函数方法,使得假设函数 h h h(hypothesis)满足 h ( x ) − > y h(x)->y h(x)−>y。针对线性回归而言,函数 h ( x ) h(x) h(x)表达式为
h ( x ) = θ 0 + θ 1 ∗ x i + θ 2 ∗ x 2 + . . . + θ n ∗ x n h(x)=\theta_0+\theta_1*x_i+\theta_2*x_2+...+\theta_n*x_n h(x)=θ0+θ1∗xi+θ2∗x2+...+θn∗xn
为方便我们使用矩阵来表达, h ( x ) = θ T ∗ x h(x)=\theta^T*x h(x)=θT</

本文介绍了线性回归分析的基本概念,包括一元和多元线性回归,并详细阐述了梯度下降算法,从简述、相关概念到算法过程,最后展示了线性回归在广告投入对公司盈利影响的案例应用。
最低0.47元/天 解锁文章
791

被折叠的 条评论
为什么被折叠?



