机器学习之线性回归

本文介绍了线性回归分析的基本概念,包括一元和多元线性回归,并详细阐述了梯度下降算法,从简述、相关概念到算法过程,最后展示了线性回归在广告投入对公司盈利影响的案例应用。
摘要由CSDN通过智能技术生成

1.线性回归分析( Linear Regression Analysis)

线性回归分析(Regression Analysis):其数据集是给定一个函数和他的一些坐标点,然后通过回归分析的算法,来估计原函数的模型,求得最符合这些数据集的函数解析式。然后我们就可以用来预估未知数据,输入一个自变量便会根据这个模型解析式输出因变量,这些自变量就是特征向量,因变量即为标签,而且标签的值是建立在连续范围内的。
通俗来讲就是我们在做数学题的时候,解未知数的方法。假如给定自变量和函数,通过函数处理自变量,然后获得函数的解。而回归分析便是相当于给定自变量和函数的解,然后去求函数。如下图所示,我们已经知道红色点坐标,然后回归得到直线,回归分析属于监督学习
01
上图只是简单的一元线性分析,回归后我们可以得到如 f ( x ) = a ∗ x + b f(x)=a*x+b f(x)=ax+b的函数表达式,但更多情况下我们是求解多元线性回归问题,那应该如何解决呢。

2.模型表达

建立数学模型之前,我们先定义如下变量。

  • x i x_i xi表示输入数据(Feature)
  • y i y_i yi表示输出数据(Target)
  • ( x i , y i ) (x_i,y_i) (xi,yi)表示一组训练数据(Training example)
  • m表示训练数据的个数
  • n表示特征数量
    监督学习目标便是根据给定的训练数据,可以得到函数方法,使得假设函数 h h h(hypothesis)满足 h ( x ) − > y h(x)->y h(x)>y。针对线性回归而言,函数 h ( x ) h(x) h(x)表达式为
    h ( x ) = θ 0 + θ 1 ∗ x i + θ 2 ∗ x 2 + . . . + θ n ∗ x n h(x)=\theta_0+\theta_1*x_i+\theta_2*x_2+...+\theta_n*x_n h(x)=θ0+θ1xi+θ2x2+...+θnxn
    为方便我们使用矩阵来表达, h ( x ) = θ T ∗ x h(x)=\theta^T*x h(x)=θT</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值