在MCMC之蒙特卡罗方法之中,讲到如何利用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或者离散求和方法。但蒙特卡罗方法需要得到对应的概率分布的样本集,而对于某些概率分布,得到这样的样本集很困难,因此本篇我们将介绍马尔可夫链来解决这种问题。
1.马尔可夫链简介
马尔可夫链定义比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态,这样可以很大程度上简化模型的复杂度。假设我们的序列状态为 . . . , X t − 2 , X t − 1 , X t , X t + 1 , . . . ...,X_{t-2},X_{t-1},X_t,X_{t+1},... ...,Xt−2,Xt−1,Xt,Xt+1,...,那么我们在时刻 X t + 1 X_{t+1} Xt+1状态的条件概率仅仅依赖于 X t X_t Xt,即
P ( X t + 1 ∣ . . . , X t − 2 , X t − 1 , X t ) = P ( X t + 1 ∣ X t ) P(X_{t+1}|...,X_{t-2},X_{t-1},X_t) = P(X_{t+1}|X_t) P(Xt+1∣...,Xt−2,Xt−1,Xt)=P(Xt+1∣Xt)
因为某一时刻状态转移只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转移概率,进而得到状态转移概率矩阵,那么马尔科夫链的模型便定了。以下图股市模型为例,共有三个状态,分别为牛市(Bull market)、熊市(Bear market)、横盘(Stagnant market)。每一个状态都能够以一定概率转移到下一状态,比如牛市以0.075的概率转移到横盘的概率,这些状态转移概率图可以转换为矩阵的形式进行表示。

如果我们定义矩阵 P P P某一位置 P ( i , j ) P(i,j) P(i,j)的值为 P ( j ∣ i ) P(j|i) P(j∣i),即从状态i转移到状态j的概率,并定义牛市的状态为0、熊市状态为1、横盘状态为2,这样便得到马尔可夫链模型的状态转移矩阵。
[ 0.9 0.075 0.025 0.15 0.8 0.05 0.25 0.25 0.5 ] \begin{bmatrix} 0.9 & 0.075 & 0.025 \\ 0.15 & 0.8 & 0.05 \\ 0.25 & 0.25 & 0.5 \end{bmatrix} ⎣⎡0.9

本文介绍了马尔可夫链在MCMC中的应用,阐述了马尔可夫链的性质,如状态转移仅依赖于前一状态,以及如何通过状态转移矩阵实现概率分布的采样。通过马尔可夫链采样,可以得到平稳分布的样本集,用于蒙特卡罗模拟。最后,讨论了如何构建马尔可夫链状态转移矩阵以匹配所需采样的平稳分布。
最低0.47元/天 解锁文章
2438

被折叠的 条评论
为什么被折叠?



