机器学习降维之线性判别模型(LDA)

线性判别分析(LDA)是一种监督学习降维方法,旨在最大化类间方差并最小化类内方差。通过求解类内散度矩阵Sw和类间散度矩阵Sb的广义瑞利商,确定最佳投影方向。LDA适用于高斯分布的数据,且最多降至k-1维,与PCA相比,LDA利用了类别信息。
摘要由CSDN通过智能技术生成

1.LDA简介

线性判别分析(Linear Discriminant Analysis, LDA) 是一种监督学习的降维方法,也就是说数据集的每个样本是有类别输出。和之前介绍的机器学习降维之主成分分析(PCA)方法不同,PCA是不考虑样本类别输出的无监督学习方法。LDA的原理简单来说就是将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点会形成按类别区分。而我们的目标就是使得投影后的数据,类间方差最大,类内方差最小

以下图为例,假设有两类数据,分别为红色和蓝色。现在我们希望,将这些数据投影到一维的直线上,让每一种类别数据的投影点尽可能的接近,而红色和蓝色数据中心之间的距离尽可能的大。
01
从上图的两种投影方式能够看出,右图能够更好的满足我们的目标,即类间方差最大,类内方差最小。下面我们来看看LDA内部原理,如何达到我们所希望的目标。

2.瑞利商和广义瑞利商

介绍LDA原理之前,我们先了解一些数学知识,即瑞利商(Rayleigh quotient)广义瑞利商(genralized Rayleigh quotient)。首先来看看瑞利商的函数R(A,x)
R ( A , x ) = x H A x x H x R(A,x) = \frac{x^HAx}{x^Hx} R(A,x)=xHxxHAx
其中x为非零向量,而A为n*n的Hermitan矩阵。Hermitan矩阵是指满足共轭转置矩阵和自己相等的矩阵,即 A H = A A^H=A AH=A。如果矩阵A是实矩阵的话,如果满足 A T = A A^T=A AT=A,那么就是Hermitan矩阵。

瑞利商R(A,x)有一个非常重要的性质,即它的最大值等于矩阵A的最大特征值,而最小值等于矩阵A的最小特征值,即满足

λ m i n ≤ x H A x x H x ≤ λ m a x \lambda_{min}\le \frac{x^HAx}{x^Hx}\le \lambda_{max} λminxHxxHAxλmax

以上就是瑞利商的内容,现在看看广义瑞利商内容,广义瑞利商函数R(A,B,x)
R ( A , B , x ) = x H A x x H B x R(A,B,x)= \frac{x^HAx}{x^HBx} R(A,B,x)=xHBxxHAx
其中x为非零向量,而A,B为n*n的Hermitan矩阵,B是正定矩阵。那么R(A,B,x)的最大值和最小值是什么呢?

首先我们先将广义瑞利商转化为瑞利商的情况,令 x = B − 1 / 2 x ′ ​ x=B^{-1/2}x'​ x=B1/2x。则其分母变为
x H B x = x ′ H ( B − 1 / 2 ) H B B − 1 / 2 x ′ = x ′ H B − 1 / 2 B B − 1 / 2 x ′ = x ′ H x ′ x^HBx = x^{'H}(B^{-1/2})^HBB^{-1/2}x' \\ = x^{'H}B^{-1/2}BB^{-1/2}x' \\ =x^{'H}x' xHBx=xH(B1/2)HBB1/2x=xHB1/2BB1/2x=xHx
分子转化为
x H A x = x ′ H B − 1 / 2 A B − 1 / 2 x ′ x^HAx= x^{'H}B^{-1/2}AB^{-1/2}x' xHAx=xHB1/2AB1/2x
此时R(A,B,x)转变为R(A,B,x′)
R ( A , B , x ′ ) = x ′ H B − 1 / 2 A B − 1 / 2 x ′ x ′ H x ′ R(A,B,x')=\frac{x^{'H}B^{-1/2}AB^{-1/2}x'}{x^{'H}x'} R(A,B,x)=xHxxHB1/2AB1/2x
利用前面的瑞利商性质,我们可以知道,R(A,B,x)的最大值为矩阵 B − 1 / 2 A B − 1 / 2 B^{-1/2}AB^{-1/2} B1/2AB1/2的最大特征值,或者说矩阵 B − 1 A B^{-1}A B1A的最大特征值,最小值为 B − 1 A B^{- 1}A B1A的最小特征值。

3.二类LDA原理

假如我们数据集为 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } D=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m) \} D={ (x1,y1),(x2,y2),...,(xm,ym)},其中任意样本 x i x_i xi为n维向量, y i ∈ { 0 , 1 } y_i \in \{0,1 \} yi{ 0,1}。我们定义 N j ( j = 0 , 1 ) N_j(j=0, 1) Nj(j=0,1)为第j类样本的个数, X j ( j = 0 , 1 ) X_j(j=0,1) Xj(j=0,1)为第j类样本的结合, μ j ( j = 0 , 1 ) \mu_j(j=0,1) μj(j=0,1)为第j类样本的均值向量, ∑ j ( j = 0 , 1 ) \sum_j(j=0, 1) j(j=0,1)为第j类样本的协方差矩阵(严格来说是缺少分母部分的协方差矩阵)。其中
μ j = 1 N j ∑ x ∈ X j   x ( j = 0 , 1 ) \mu_j = \frac{1}{N_j}\sum_{x\in X_j}\ x(j=0,1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值