lucene的缓存机制和实现方案

Lucene的缓存机制和解决方案

概述... 1

1、Filter Cache. 1

2、field缓存... 2

3、结论... 6

4.LuceneBase缓存解决方案... 6

 

 

 

概述

lucene的缓存可分为两类:filter cache和field cache。

filter cache的实现类为CachingWrapperFilter,用来缓存其他Filter的查询结果。

field cache的实现类是FieldCache,缓存用于排序的field的值。

简单来说,filterCache用于查询缓存,fieldcache用于排序。

这两种缓存的生存周期都是在一个IndexReader实例内,因此提高Lucene查询性能的关键在于如何维护和使用同一个IndexReader(即IndexSearcher)。

 

Filter Cache

从严格意义上来说,lucene没有查询类似数据库服务器的数据高速缓存。lucene的Filter缓存实现类是CachingWrapperFilter,它缓存了查出来的bits。另外lucene还提供了FilterManager,一个单例对象,用来缓存Filter本身。

下面是CachingWrapperFilter的具体实现:

 

public class CachingWrapperFilter extendsFilter {

protected Filter filter;

 

protected transient Map cache;//这是作为缓存使用的map

 

public CachingWrapperFilter(Filter filter){

this.filter = filter;

}

 

public BitSet bits(IndexReader reader)throws IOException {

if (cache == null) {

cache = new WeakHashMap();//采用WeakHashMap实现,由JVM回收内存

}

 

synchronized (cache) { // check cache

BitSet cached = (BitSet) cache.get(reader);//key为IndexReader,value为BitSet,所以该缓存生存周期在一个IndexReader内

 

if (cached != null) {

return cached;

}

 

}

 

//若没有找到缓存,则重新读取

final BitSet bits = filter.bits(reader);

synchronized (cache) { // update cache

cache.put(reader, bits);

}

 

return bits;

}

 

在FilterManager里,采用Filter.hashCode()作为key的,所以使用的时候应该在自定义的Filter类中重载hashCode()方法。

 

 

例子:Filterfilter=FilterManager.getInstance().getFilter(new CachingWrapperFilter(newMyFilter()));如果该filter已经存在,在FilterManager返回该Filter的缓存(带有bit缓存),否则返回本身(不带bit缓存的)。

 

 

FilterManager里有个定时线程,会定期清理缓存,以防造成内存溢出错误。

 

 

field缓存

field缓存是用来排序用的。lucene会将需要排序的字段都读到内存来进行排序,所占内存大小和文档数目相关。经常有人用lucene做排序出现内存溢出的问题,一般是因为每次查询都启动新的searcher实例进行查询,当并发大的时候,造成多个Searcher实例同时装载排序字段,引起内存溢出。

 

Field缓存的实现类是FieldCacheImpl,下面我们看看排序时怎么用到Field缓存的:

在IndexSearcher类里的方法,有关排序的查询都会调用到此方法:

public TopFieldDocs search(Weight weight,Filter filter, final int nDocs,Sort sort)throws IOException {

 

TopFieldDocCollector collector =

new TopFieldDocCollector(reader, sort,nDocs);//排序操作由TopFieldDocCollector实现

 

search(weight, filter, collector);//开始查询,查询结果回调Collector.collect()方法时实现排序

 

return (TopFieldDocs)collector.topDocs();//返回TopFieldDocs对象,这个对象和TopDocs的差异在于TopFieldDocs里包含排序字段的信息,包括字段名和字段值。其中TopFieldDocs中ScoreDoc[]的实例是FieldDoc[]

 

}

 

 

下面看看TopFieldDocCollector.collect()是怎么实现的:

 

public void collect(int doc, float score) {

if (score > 0.0f) {

totalHits++;

if (reusableFD == null)

reusableFD = new FieldDoc(doc, score);s

else {

reusableFD.score = score;

reusableFD.doc = doc;

}

 

reusableFD = (FieldDoc)hq.insertWithOverflow(reusableFD);//hq是FieldSortedHitQueue对象,一个PriorityQueue的子类,insertWithOverflow()实现一个固定大小的排序队列,排序靠后的对象被挤出队列

 

}

 

}

FieldSortedHitQueue是通过重载lessThan()方法来实现排序功能的:

*/

 

protected boolean lessThan (final Object a,final Object b) {

final ScoreDoc docA = (ScoreDoc) a;

final ScoreDoc docB = (ScoreDoc) b;

// run comparators

 

final int n = comparators.length;

int c = 0;

for (int i=0; i<n && c==0; ++i){

c = (fields[i].reverse) ?comparators[i].compare (docB, docA)

: comparators[i].compare (docA, docB);//通过comparators[]来进行排序,我们剩下的任务就是看看这些comparator[]是怎么构造的,怎么使用的Fieldcache的

 

}

 

// avoid random sort order that could leadto duplicates (bug #31241):

if (c == 0)

return docA.doc > docB.doc;

return c > 0;

 

}

 

 

comparators实在FieldSortedHitQueue的构造函数里创建的:

 

public FieldSortedHitQueue (IndexReader reader,SortField[] fields, int size)throws IOException {

final int n = fields.length;

comparators = new ScoreDocComparator[n];

this.fields = new SortField[n];

 

for (int i=0; i<n; ++i) {

String fieldname = fields[i].getField();

comparators[i] = getCachedComparator(reader, fieldname, fields[i].getType(), fields[i].getLocale(), fields[i].getFactory());//调用getCachedComparator方法获得缓存的comparators,comparator是ScoreDocComparator的实例

 

if (comparators[i].sortType() ==SortField.STRING) {

this.fields[i] = new SortField (fieldname,fields[i].getLocale(), fields[i].getReverse());

} else {

this.fields[i] = new SortField (fieldname,comparators[i].sortType(), fields[i].getReverse());

}

 

}

 

initialize (size);

 

}

 

 

下面看看getCachedComparator()的实现:

static final FieldCacheImpl.CacheComparators = new FieldCacheImpl.Cache(){

。。。

 

}

 

 

static ScoreDocComparator getCachedComparator(IndexReader reader, String field, int type, Locale locale,SortComparatorSource factory)throws IOException {

//以下两种不需要读取字段

if (type == SortField.DOC) returnScoreDocComparator.INDEXORDER;//按索引顺序排序

 

if (type == SortField.SCORE) return ScoreDocComparator.RELEVANCE;//按相关度排序

 

FieldCacheImpl.Entry entry = (factory !=null)? new FieldCacheImpl.Entry (field, factory)

: new FieldCacheImpl.Entry (field, type,locale);

 

//其他类型的排序需要读取字段到缓存中

 

return(ScoreDocComparator)Comparators.get(reader, entry);//Comparators 是一个FieldCache的实例

 

}

 

 

Comparators.get()方法根据排序字段类型的不同,返回ScoreDocComparator的不同实现,下面我们看看String类型的实现,就可以知道什么时候调用fieldCache了:

 

static ScoreDocComparator comparatorString(final IndexReader reader, final String fieldname)

 

throws IOException {

 

final String field = fieldname.intern();

 

//下面代码读取缓存,得到字段值和文档id的对应关系,如果缓存不存在,则读取索引文件。缓存的生命周期是和IndexReader一样,所以不同查询使用同一个Searcher,可以保证排序缓存只有一个,不会出现内存溢出的问题

 

final FieldCache.StringIndex index =FieldCache.DEFAULT.getStringIndex (reader, field);

 

return new ScoreDocComparator () {

 

 

public final int compare (final ScoreDoc i,final ScoreDoc j) {

 

final int fi =index.order[i.doc];//index.order[]的值是按自定义字段的排序,数组的索引是lucene docid;可以看看getStringIndex的具体实现来看看这些值是怎么读进来的,这里就不详细说明了

 

final int fj = index.order[j.doc];

 

if (fi < fj) return -1;

 

if (fi > fj) return 1;

 

return 0;

 

}

 

 

public Comparable sortValue (final ScoreDoci) {

 

return index.lookup[index.order[i.doc]];

 

}

 

 

public int sortType() {

 

return SortField.STRING;

 

}

 

};

 

}

 

 

结论

lucene使用上述的两个缓存机制已经能解决绝大部分的问题了。solr在lucene之上封装,又增加了另外的缓存,但应该说作用不太大,反而使代码变得很复杂了。

 

缓存解决方案

Lucene缓存的生存周期都是在一个IndexReader实例内,因此提高Lucene查询性能的关键在于如何维护和使用同一个IndexReader(即IndexSearcher)。

因此我们需要新写一个SingleIndexSearcher(源代码见下)类,该类继承IndexSearcher,作用为实现IndexSearcher的单例模式。

 

LuceneBase加入类SingleIndexSearcher并将IndexSearcher对象的生成都用SingleIndexSearcher. getInstance()方法。

  

缓存Filter用法:Filter filter = newCachingWrapperFilter(new FieldFilter(field, value));

   或

   Filterfilter = FilterManager.getInstance().getFilter(new CachingWrapperFilter(newFieldFilter(field, value)));

 

 

 

/**

 *IndexSearcher单例模式的实现 采取单例模式是要充分利用Lucene的缓存,同时防止多个IndexSearcher对象导致内存溢出和并发问题

 *

 *@author 路卫杰

 *@version 1.0, 2010-8-4

 *@see IndexSearcher

 */

public class SingleIndexSearcher extendsIndexSearcher {

       /**私有静态SingleIndexSearcher对象 */

       privatestatic IndexSearcher instance;

       static{           

               try {

                     instance= newSingleIndexSearcher(Configure.getProperties().getProperty("ZkAnalyzerPath"));

                     System.out.println("构造");

               } catch (CorruptIndexException e) {

                     e.printStackTrace();

              }catch (IOException e) {

                     e.printStackTrace();

              }

       }

      

 

       /**

        * 构造方法

        *

        * @param path

        *           索引路径

        * @throws IOException

        * @throws CorruptIndexException

        */  

       publicSingleIndexSearcher(String path) throws CorruptIndexException, IOException{         

              super(path);

       }

 

       /**

        * 获得单例

        */

       publicstatic IndexSearcher getInstance() {

              returninstance;

       }

}

 

 

 

搜索速度比较

搜索相同关键字和过滤器次数(次)  一般过滤器(ms)    缓存过滤器(ms)   缓存排序(ms)

                                1                          2407            2438          2093

                                5                          4750            2531          2219

                              10                         8110            2672          2313

                              20                        14750            2922          2593

                              50                        34498            3672          3250

                            100                       67546            4844          4407

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值