下面给出了神经网络的训练流程,包括数据加载与预处理、网络定义、损失函数和优化器定义、网络训练和网络测试。
import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import torch.nn as nn
import torch.nn.functional as F
from torch import optim, multiprocessing
# 显示图像
show = ToPILImage() # 把Tensor转换为Image
# 定义数据预处理
transform = transforms.Compose([
transforms.ToTensor(), # 转换为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化
])
# 1.加载CIFAR-10数据集
trainset = tv.datasets.CIFAR10(root='./pytorch-book-cifar10/', train=True, download=False, transform=transform)
testset = tv.datasets.CIFAR10(root='./pytorch-book-cifar10/', train=False, download=False, transform=transform)
# 类别标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 2.定义卷积神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) # 输入3通道图像,输出6通道
self.conv2 = nn.Conv2d(6, 16, 5) # 输出16通道
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) # 10分类
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 3.定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 4.训练模型
def train_model(trainloader):
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印训练状态
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
if __name__ == '__main__':
multiprocessing.freeze_support() # 兼容Windows多进程
# 数据加载器
trainloader = t.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
testloader = t.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
# 训练模型
train_model(trainloader)
# 展示训练集中的某一图像
(data, label) = trainset[100]
print("类别标签:", classes[label])
show((data + 1) / 2).resize((100, 100))
# 5.测试网络
dataiter = iter(testloader)
images, labels = dataiter.__next__()
print("实际标签:", ' '.join('%5s' % classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images + 1) / 2)).resize((400, 100))
outputs = net(images)
_, predicted = t.max(outputs, 1)
print("预测结果:", ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
# 在测试集上计算准确率
correct = 0
total = 0
with t.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = t.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('测试集上的准确率: %d %%' % (100 * correct / total))
输出:
[1, 2000] loss: 2.158
[1, 4000] loss: 1.832
[1, 6000] loss: 1.685
[1, 8000] loss: 1.582
[1, 10000] loss: 1.533
[1, 12000] loss: 1.501
[2, 2000] loss: 1.421
[2, 4000] loss: 1.361
[2, 6000] loss: 1.340
[2, 8000] loss: 1.339
[2, 10000] loss: 1.332
[2, 12000] loss: 1.264
Finished Training
类别标签: ship
实际标签: cat ship ship plane
预测结果: dog ship ship ship
测试集上的准确率: 53 %
进程已结束,退出代码为 0


被折叠的 条评论
为什么被折叠?



