python 18 time模块简介

# python 常用模块介绍
# /usr/sbin/py/python
# -*-coding:utf8-*-
import time  # time 模块

print(time.time())  # 时间戳

local_time = time.localtime()  # 本地时间对象   #默认参数为 tim.time()
print(local_time)
print(local_time.tm_year)

print(time.gmtime())  # 世界标准时间
# 时间字符串

# 时间戳转换结构化时间
print(time.localtime(1582364393))
# 结构化时间转换为时间戳
print(time.mktime(local_time))

# 将结构化时间转换成字符串时间
print(time.strftime("%y-%m-%d  %X",local_time))
# %Y 表示年    2020-02-22  17:34:59  y: 20-02-22  17:35:42
# %m 表示月  注意区分大小写
# %d 表示日  注意区分大小写
# %X 表示时分秒 注意区分大小写

# 将字符串时间转换为结构化时间
print(time.strptime("2020-03-01 09:20:35","%Y-%m-%d %X"))

import datetime
print(datetime.datetime.now()) 
AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值