redis-cluster 搭建

Redis cluster搭建

Redis cluste 要求至少有3个master来组成一个高可用,分布式的集群。

每个master都建议给一个salve。6台最好。

 

创建文件夹:

/var/log/redis

/etc/redis-cluster

[root@vm703 ~]# mkdir -p /etc/redis-cluster

[root@vm703 ~]# mkdir -p /var/log/redis

准备配置文件:

   7001~7006文件。

cluster-enabled yes

port 7001

cluster-config-file /etc/redis-cluster/nodes-7001.conf

cluster-node-timeout 15000

daemonize yes

pidfile /var/run/redis_7001.pid

dir /var/redis/7001  #存放的是aof或者rdb文件

bind 0.0.0.0

logfile /var/log/redis/7001.log

appendonly yes

准备对应的6个启动脚本:

   Init.d文件夹下,修改端口即可。

安装ruby

  Yum -y install ruby

  Yum -y install rubygems

  Gem install redis

cp /usr/local/soft/redis/redis-5.0.4/src/redis-trib.rb  /usr/local/bin/

 

创建集群命令:

redis-cli -a redis-admin  --cluster create  192.168.137.201:7001 192.168.137.201:7002 192.168.137.3:7003 192.168.137.3:7004 192.168.137.4:7005 192.168.137.4:7006 --cluster-replicas 1

查看节点:redis-cli -a redis-admin  --cluster check 192.168.137.201:7001

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值