区块链扫盲:区块链技术初探(二)

本文介绍了区块链的基本概念,包括共识机制及其实现原理,并探讨了区块链技术的几种主要类型及其应用场景。此外,还概述了区块链技术发展的三个阶段,并列举了一些主流的区块链开源技术体系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​​5. 共识机制

区块链是一种去中心化的分布式账本系统,由于点对点网络下存在较高的网络延迟,各个节点所观察到的事务先后顺序不可能完全一致。因此区块链系统需要设计一种机制对在差不多时间内发生的事务的先后顺序进行共识。这种对一个时间窗口内的事务的先后顺序达成共识的算法被称为共识机制

 

5.1区块链和分布式系统容错的相同点

(1) Append only

(2) 强调序列化(时间有序)。

(3) 少数服从多数原则。

(4) 分离覆盖的问题:即长链覆盖短链区块,多节点覆盖少数节点。

 

5.2   区块链和分布式容错的不同点

(1) 分布式系统容错,一般不考虑拜占庭问题,即假设所有节点只发生宕机、网络故障等非人为问题,并不考虑恶意节点篡改数据的问题;

(2) 分布式系统容错的一致性算法是面向日志(数据库)的,而区块链共识算法是面向交易的,前者可以作为后者的基础和技术保障;

(3) 区块链,更多地是解决拜占庭将军问题。

 

5.3拜占庭问题解决算法

(1)  PBFT:投票机制,1个节点1票,少数服从多数,允许1/3的节点不可靠、但不能防止女巫攻击行为;

(2) 区块链引入奖励机制和惩罚机制(博弈)辅助解决问题,这是工作量证明   算法的基础,使得作恶成本高于收益,以阻止作恶行为;

(3) 交易永远没有最终状态,但有最接近最终状态的状态。通常经过6个区块的发展,交易被推翻的可能性极小。

 

5.4  参考

拜占庭问题:指系统中的节点可能出现任何错误,包括有意的误导,故意破坏系统,伪造签名,也包括故障、超时,重复消息等。

 

共识原理:当多个主机通过异步通讯方式组成网络集群时,这种异步网络默认是不可靠的,那么在这些不可靠主机之间复制状态需要采取一种机制,以保证每个主机的状态最终达成相同一致性状态,取得共识。根据FLP原理,Impossibility of Distributed Consensuswith One Faulty Process一文提出:在一个异步系统中我们不可能确切知道任何一台主机是否死机了,因为我们无法分清楚主机或网络的性能减慢与主机死机的区别,也就是说我们无法可靠地侦测到失败错误。


6. 主流共识算法

6.1   工作量证明(Proof of Work, POW

(1) 工作量证明机制,使得区块的产生具有计算性难度,以增加攻击的成本;

(2) 从统计学角度,1笔交易在6个区块后被认为是明确确认且不可逆的。核心开发者认为,需要120个区块才能充分保护网络不受来自潜在更长的已将新产生的币花掉的攻击区块链的威胁;

(3) 尽管出现更长的区块链会变得不太可能,但任何拥有巨大经济资源的人仍有可能制造一个更长的区块链来伪造交易(51%攻击)。

 

6.2   股权证明机制(Proof of Stake,POS)

(1) 股权证明机制有很多不同变种,但基本概念是产生区块的难度与在网络里所占的股权(所有权占比)成比例;

(2) 解决POW的资源消耗问题。

    

6.3   瑞波共识机制(Ripple Consensus)

(1) 瑞波共识算法,使一组中心化的特殊节点列表达成共识;

(2) 初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过;

(3) 共识遵循这核心成员的51%权力,外部人员则没有影响力。由于该俱乐部由中心化开始,它将一直是中心化的”;

(4)  瑞波系统将股东们与其投票权隔开,并因此比其他系统更中心化。

 

6.4   授权股权证明机制(DPOS)

(1) 每个股东按其持股比例拥有影响力,51%股东投票的结果将是不可逆且有约束力的,这点类似POS;

(2) 每个股东将其投票权授予一名代表,获票数最多的前100位代表按既定时间表轮流产生区块。每名代表分配一个时间段来生产区块;

(3) 所有代表将收到等同于一个平均水平的区块所含交易费的10%作为报酬;

(4) 该模式每30秒钟产生一个区块。

 

6.5   基于交易的股权证明机制(TaPOS)

(1) 通常POS代表是短时间的;

(2) TaPOS为股东们提供了一个长效机制来直接批准他们的代表的行为;

(3) 平均而言,51%的股东在6个月内可以直接确认每个区块;

(4)  而交易活跃流通的股份所占的比例,则平均10%的股东在几天内可以直接确认区块链。

 


7. 区块链种类

区块链主要公有链,联盟链,私有链这几类 

7.1公有链

(1) 运行在互联网;

(2) 完全的分布式;

(3) 数据节点数量多变且不可预知;

(4)  数据是公开的;

(5) 任何人都可以匿名参与;

(6) 运维成本较高,依赖奖励机制;

(7) 交易速度较慢。

 

7.2联盟链

(1) 由多机构联盟联合运行;

(2) 数据具有保密性;

(3) 数据节点是事先选择的;

(4) 节点间连接速度较快;

(5) 运维成本较低;

(6) 交易速度较快,交易成本较低;

(7) 数据可以被联盟修改。

 

7.3私有链

实际只使用区块链技术进行数据存储和交易处理,背离区块链基础的目标。

(1) 由单个机构运行;

(2) 数据访问和使用受限;

(3) 数据节点是事先选择的;

(4) 节点间连接速度较快;

(5) 运维成本较低;

(6) 交易速度较快,交易成本低;

(7) 数据可以被修改。



8. 区块链技术发展阶段

区块链技术的发展目前主要有3个阶段,分别是区块链1.0,区块链2.0,区块链3.0


8.1   区块链1.0

区块链1.0是以比特币为代表的数字货币应用,为了解决货币和支付手段的去中心化,其场景包括支付、流通等货币职能。

 

8.2   区块链2.0

区块链2.0就是更宏观的对整个市场的去中心化,利用区块链技术来转换许多不同的资产而不仅仅是比特币,通过转让来创建不同资产单元的价值。最显著的标志是数字货币与智能合约相结合,对金融领域更广泛的场景和流程进行优化的应用。

让所有的金融交易都可以被改造成在区块链上使用,包括股票、私募股权、众筹、债券、对冲基金和所有类型的金融衍生品:期货、期权等

 

8.3   区块链3.0

区块链3.0则超出金融领域,为各种行业提供去中心化解决方案,可用于实现全球范围内日趋自动化的物理资源和人力资产的分配,促进科学、健康、教育等领域的大规模协作。例如:自动化采购,智能化物联网应用,供应链自动化管理,虚拟资产兑换、转移。

 

 

9.区块链主流开源技术体系介绍 

区块链开源技术种类繁多,这里就主流的开源技术体系进行简要的介绍。

 

9.1  比特币体系(BTC

比特币(BitCoin)是最早也是全球最广泛使用和真正意义的去中心化区块链技术,因此他的开源技术体系非常值得参考。比特币区块链的核心技术框架采用C++语言开发,共识算法采用POW算法,工作量(挖矿)证明获得记账权,容错50%,实现全网记账。核心技术框架采用C++语言开发,公网TPS<7

开源地址为:https://github.com/bitcoin/bitcoin

 

9.2  以太坊(ETH

以太坊是一个图灵完备的区块链一站式开发平台,采用多种编程语言实现协议。基于以太坊平台之上的应用是智能合约,这是以太坊的核心。智能合约配合友好的界面和外加一些额外的小支持,可以让用户基于合约搭建各种千变万化的DApp应用,这样使得开发人员开发区块链应用的门槛大大降低。

底层核心技术框架采用C++Go等语言开发,智能合约采用Solidity语言编写。公网TPS<35,未来有望达到2000TPS

开源地址:https://github.com/ethereum/

 

9.3IBM HyperLedger fabric

IBMHyperLedger,又叫 fabric,是一个带有可插入各种功能模块架构的区块链实施方案,他的目标是打造成一个由全社会来共同维护的一个超级账本。 Fabric的主要框架核心开发语言是GO语言,系统目标是15个验证节点下最理想情况下可以有100KTPS的性能,更适合于联盟链。

开源地址:https://github.com/hyperledger/fabric

 

9.4  比特股(BitShare

比特股(BitShares)是区块链历史上里程碑式的产品之一。它提供的BitUSD等锚定资产是虚拟币历史上的一个最重要变革之一,能够极大消除虚拟货币被人诟病的波动性大的问题。比特股采用的是DPos共识算法,公网TPS<3000

比特股1.0开源地址:https://github.com/bytemaster/bitshares

比特股2.0开源地址:http://github.com/bitshares

 

9.5  瑞波(Ripple

瑞波(Ripple)是一个开放的支付网络,是基于区块连的点到点全球支付网络。他的核心技术框架采用C++语言开发,公网TPS<1000

开源地址:https://github.com/ripple/rippled

  

9.6  小蚁(NEO

中国的世界级公链,NEO区块链通过将点对点网络、拜占庭容错、数字证书、智能合约、超导交易、跨链互操作协议等一系列技术相结合,让你快速、高效、安全、合法地管理你的智能资产。

NEO的底层是采用的C#,GO等语言,公网的TPS<1000

开源地址:https://github.com/neo-project

 

 

 

本次区块链初探系列完毕,后续芯链社区将会继续推出区块链相关的技术分享文章,供技术爱好者参考或者学习。

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 、双线性插值算法 这种算法主要用于处理维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值