1、写一个高效C语言程序,计算一个无符号整数中1的个数。
- for(count=0; x ; count++) x &= x-1;
- 同理,计算0的位数:
- for(count=32; x ; count--) x &= x-1;
2、给定字符串S1和S2,写程序判断S2是否能由S1旋转而来,要求只能调用一次strstr系统函数。
- void main()
- {
- char *str1 = "wang";
- char *str2 = "angw";
- char *tmp = (char*)malloc(2*strlen(str1) + 1);
- sprintf(tmp, "%s%s", str1, str1);
- if (strstr(tmp, str2))
- cout<<"yes"<<endl;
- getchar();
- }
3、IF条件中填入什么东西,能能让下面的程序打印出HelloWorld?
- if(<condition>)
- printf ("Hello");
- else
- printf("World");
- if (!printf("Hello"))
- printf("Hello");
- else
- printf("World");
4、只修改或添加一个字符,使下面的程序打印出20个*号。(至少有3种解法)
- int main()
- {
- int i, n = 20;
- for (i = 0; i < n; i--)
- printf("*");
- return 0;
- }
- 解法1:
- intmain()
- {
- inti,n=20;
- for(i=0;i<n;n--)
- printf("*");
- return0;
- }
- 解法2:
- intmain()
- {
- inti,n=20;
- for(i=0;i<n;i++)
- printf("*");
- return0;
- }
5、写一个算法,反转字符串中的单词顺序。
例如:Hi Welcome to cricode 反转成 cricode to Welcome Hi
- void main()
- {
- string str("Hi Welcome to cricode");
- stack<char> cstack;
- stack<char> tmp;
- int index = 0;
- for (index = 0; index < str.size(); index++)
- {
- cstack.push(str[index]);
- }
- index = 0;
- while(!cstack.empty())
- {
- if (' ' == cstack.top()) //实验代码,未对标点符号做判断
- {
- while(!tmp.empty())
- {
- str[index++] = tmp.top();
- tmp.pop();
- }
- str[index++] = ' ';
- cstack.pop();
- }
- else
- {
- tmp.push(cstack.top());
- cstack.pop();
- }
- }
- while(!tmp.empty())
- {
- str[index++] = tmp.top();
- tmp.pop();
- }
- cout<<str<<endl;
- getchar();
- }
6、100层楼,给你两个球,球的特性如下:如果你从这栋楼的某一小于X的楼层扔下这个球,球不会碎,如果你从大于等于X的楼层扔下,则球必定会碎。假设你能重复使用没有摔碎的球,请给定一个算法,用最少的扔球次数找出边界楼层X.
- 如果是两个玻璃球,最少次数m确定楼高为N的哪一层开始能使这个玻璃球摔碎这个问题,等价于求最小的m,使得 1+2+...+m >= N 。
- 假设N正好等于1+2+...+m,那么我觉得最优的策略就是第一个玻璃球扔在第m层,如果碎了,显然需要剩下的m-1层从底往上一一尝试,最坏情况就是m;
- 假设m处没有碎,问题等价于楼高N'=1+2+...+(m-1)的地方同样的问题需要的次数m'+1 (1就是第一次在m层的尝试),
- 根据我们的递归,容易得到N'对应需要的次数正好是m-1次,因此总次数也是m。
- 我们的二分应该倾向于不管失败还是成功,两种情况的总检测次数相等。因此这应该是最优的算法。
- 当然,当N不能表示成1+2+...+m使,我们只能找最小的m作为需要测试的次数。
- 至于100层楼,显然m=14,我们的第一次扔球应该分别在第14, 如果没碎继续在14+13=27,再没有碎则扔在第27+12=39层,以此类推。
7、A、B两座城市相距1000Km,我们有3000个香蕉要从A城市运往B城市,已知一头大象一次最多能运1000个香蕉,而且大象每次走1Km要吃掉一个香蕉,如果香蕉被吃完了,大象就不能再继续往前走。请问,你最终最多能运多少香蕉到B城市?
- 1000米设置一个回头点,是不可行的。1000米设置两个回头点A,B,也就是将1000米分成3段。设每段长度为从起点到A点X1,A点到B点X2,B点到终点X3,
- X1+X2+X3=1000
- 在A点需要来回5次才能将3000的香蕉运到A点。那么A点有3000-5*X1的香蕉,
- 通过推理,3000-5*X1小于等于2000,
- 这样到B点 3000-5*X1-3*X2,这个值小于等于1000,
- 终点剩下3000-5*X1-3*X2-X3,根据上面的判断,如果都取等于的话:
- X1=200;X2=334
- 最终剩下532。
- 注:其实X2取333,这时候剩余533个,注意这种情况下需要丢弃一根香蕉。
8、给你6跟等长的筷子,要求组成四个等边三角形,不允许折断或者弯曲筷子。
正四面体即可。
9、交换两个整形变量的值,不使用第三个变量
- 解法1:
- 把两个整形数放到数轴上,如图(吐槽一下,博客中不能画图,真不方便,可以考虑增加简单画图的功能):
- <span style="color:#000099;">-----<span style="color:#FF0000;">|</span>-------------<span style="color:#FF0000;">|</span>------></span>
- a <span style="color:#FF0000;"><-- b-a --></span> b
- 于是有
- a=b-a //a为a、b之间距离
- b=b-a //b减去a、b之间距离,等于之前a的值
- a=b+a //现在的b加上a、b之间距离,等于之前b的值
- 解法2:
- 根据异或运算符性质,a=a^b^b:
- a=a^b //a' = a^b, b' = b
- b=b^a //b' = a , a' = a^b
- a=b^a //b' = a, a' = b
- 解法3:
- 指针运算,原理同1
10、不使用比较运算符求两个数中较大者
还是数轴原理
#define max(a, b) ( ( (a) + (b) + abs((a) - (b)) ) / 2 )
11、洗牌算法
解法1
a、定义一个54整数数组poker[54],分别赋值1~54
b、生成两个随机数:m=rand()%54 + 1, n=rand()%54 + 1
c、交换pocker[m]与pocker[n]的值
d、重复b、c动作N次,N值越大越平均,但需要考虑效率。
解法2
使用集合,如vector或list
- vector pocker; //未洗牌的一幅扑克,顺序为1~54
- vector orderd; //已洗牌的扑克集合,初始为空
- while(pocker.size())
- {
- p = rand() % pocker.size();
- orderd.push_back(pocker[p]);
- pocker.erase(pocker.begin() + p);
- }