- 博客(15)
- 收藏
- 关注
原创 Android 缓存日志(Logcat)导出与分析全攻略
本文介绍了Android缓存日志(Logcat)的导出与分析方法,包括按进程ID、日志级别、关键字等多种过滤方式,以及自动化导出脚本示例。文章还提供了验证日志、解决乱码问题等实用技巧,并针对常见问题给出优化建议。通过掌握这些方法,开发者可以更高效地排查Android应用崩溃和异常问题。
2025-08-08 13:24:17
430
原创 《新手必看:Shell脚本技术文档》
Shell脚本技术摘要 本文档详细介绍Shell脚本编程核心知识,包括基础语法、变量操作、流程控制、函数定义和文件处理。主要内容有: Shell脚本基础概念和执行方法 变量定义与特殊变量的使用 条件判断(if语句、文件测试、数值比较) 循环结构(for/while循环) 函数定义与返回值处理 文件操作(读写、处理) 示例脚本test.sh的详细解析 常用命令和最佳实践 文档采用清晰的代码示例和注释,帮助开发者快速掌握Shell脚本编程技巧,实现自动化任务处理。特别适合Linux/Unix系统管理员和开发人员
2025-07-08 19:57:24
749
原创 【520 理工生的专属浪漫:一份特别的 HTML 表白文档】
在 520 这个充满爱意的日子里,对于理工科的朋友们来说,用代码来表达情感,才是最独特的方式!
2025-05-20 14:13:34
267
原创 【医学领域智能医学问答系统知识图谱建模研究报告】
本研究构建的医学知识图谱实现了对疾病、药物、症状等实体的结构化建模,支持智能问答系统的语义推理与精准检索。通过案例分析验证了知识图谱在疾病-症状关联、药物副作用预警等场景的有效性。
2025-03-12 11:30:04
1342
原创 【联邦学习:隐私保护与效率平衡的艺术】
本文简要介绍了联邦学习的概念、关键技术、优势以及面临的隐私保护挑战和解决方案。希望通过本文,读者能够对联邦学习有一个基本的了解,并认识到其在数据隐私保护方面的重要性。随着技术的不断进步,联邦学习有望在更多领域得到应用,为我们的数据隐私保护提供更加坚实的保障
2024-05-22 18:04:50
1681
1
原创 《深度学习之迁移学习》详解
迁移学习是一种先进的机器学习技术,它允许将一个任务中获得的知识迁移到另一个相关任务上,尤其适用于数据量有限或难以获取标注数据的情况。它基于不同任务之间存在相关性的原则,通过迁移预训练模型的参数来加速新任务的学习过程,并提高模型性能。
2024-05-21 16:25:35
6315
1
原创 《Attention is All You Need》:深度解读Transformer模型
本文将首先介绍常见的Attention机制,然后详细解读论文《Attention is All You Need》,该论文在NIPS 2017上发表,标志着Attention机制在NLP领域的一个重要里程碑。论文中提出的Transformer模型,以其独特的架构和优异的性能,已经成为当前NLP任务中的主流模型之一。
2024-05-13 15:11:31
5448
原创 【《ImageNet Classification with Deep Convolutional Neural Networks》最详细的读后感和代码复现教程】
论文描述了他们训练的深度卷积神经网络,该网络能够对 ImageNet 数据集中的 1.2 百万高分辨率图像进行分类,这些图像被分为 1000 个不同的类别,是一个典型的有监督学习多分类问题。论文中神经网络由卷积层、最大池化层和全连接层组成,激活函数采用了当时全新的Relu,最后使用1000路的softmax作为分类输出,并且使用了“dropout”正则化方法来避免过拟合。他们在测试数据上取得了 top-1 和 top-5 的错误率分别为 37.5% 和 17.0%,这显著优于之前的最佳水平。论文还提到
2024-05-10 15:19:19
1140
1
原创 【Anaconda 虚拟环境搭建----最适合新手的详细教程】
本文是一份专为新手准备的Anaconda虚拟环境搭建教程,详细介绍了conda和pip这两种Python包管理工具的区别和用途,并提供了使用conda进行虚拟环境管理的常用指令。文章首先对比了conda和pip的特点,指出conda不仅能够管理Python包,还能管理其他语言的包和依赖关系,同时可以创建和管理隔离的环境。而pip主要用于管理Python包,并且常与虚拟环境结合使用以实现项目隔离。接着,文章列出了几个常用的conda指令,包括查看已有虚拟环境列表、创建和激活虚拟环境、退出虚拟环境以及删除
2024-04-09 14:05:57
18341
3
原创 缺陷检测基本知识及分类
时间变化和运动模式:视频中的运动目标和背景场景的动态变化可能导致检测的困难,而且不同的缺陷可能具有不同的运动模式,需要针对性地建模和处理。多样性:产品表面的缺陷形状、大小、颜色等可能会随着不同产品和制造过程的变化而多样化,使得设计通用的缺陷检测算法变得困难。信号波动和频谱变化:声音信号的波动和频谱特征在不同场景和设备上可能会有很大的变化,需要建立鲁棒的检测模型。噪音和干扰:环境噪音和其他声音干扰可能影响缺陷信号的准确检测和分类,需要有效的噪音抑制和信号增强技术。
2024-04-09 08:39:00
1347
转载 【用python爬取B站视频(含源码)-----最适合小白的教程】
在 B 站看视频已经成为我们日常生活中不可或缺的一部分。很多时候我们在观看视频时,想要获取视频的相关信息,比如视频的标题、发布者、播放量等等。但是由于 B 站页面上的信息有限,很多时候需要通过爬虫来获取更全面的信息。本篇文章就将介绍如何使用 Python 爬取 B 站视频的相关信息。
2023-05-18 23:04:45
9185
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人