蹲家宅宅
码龄1年
关注
提问 私信
  • 博客:43,734
    问答:620
    44,354
    总访问量
  • 86
    原创
  • 244,494
    排名
  • 500
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:大一软件工程学生,通过csdn来记录计算机相关课程中的学习

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2023-07-10
博客简介:

Xudong_12345的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    607
    当月
    1
个人成就
  • 获得656次点赞
  • 内容获得15次评论
  • 获得640次收藏
  • 代码片获得243次分享
创作历程
  • 17篇
    2024年
  • 69篇
    2023年
成就勋章
TA的专栏
  • 深度学习记录
    26篇
  • 算法
    49篇
  • 易错辨析
    3篇
兴趣领域 设置
  • Python
    python
  • 编程语言
    c++c语言
  • 开发工具
    githubvisual studiovisual studio code
  • 数据结构与算法
    算法数据结构
  • 人工智能
    机器学习人工智能深度学习神经网络pytorch
  • 操作系统
    windowsmacos
  • 软件工程
    软件工程
  • 数学
    动态规划
  • 学习和成长
    蓝桥杯leetcode
  • 非IT技术
    学习
  • 其他
    经验分享笔记
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数值计算:四元非齐次方程求解

发布问题 2024.05.09 ·
4 回答

ubuntu20.04.6wifi图标消失问题解决方案

本人电脑惠普战99 2023版 集显版双系统:win11 + ubuntu 20.04.6LTS。
原创
发布博客 2024.02.17 ·
772 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

ubuntu20.04.6wifi消失和显卡驱动问题解决方案

发布资源 2024.02.17 ·
odt

深度学习记录--Batch Norm

与Input Norm对输入层进行归化不同,Batch Norm是对。
原创
发布博客 2024.01.26 ·
486 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

整数反转算法(leetcode第7题)

依次取每位数反转,与最大最小值进行比较。
原创
发布博客 2024.01.25 ·
472 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

深度学习记录--学习率衰减(learning rate decay)

如下图,蓝色曲线表示mini-batch梯度下降,绿色曲线表示采用学习率衰减的梯度下降。mini-batch梯度下降最终会在最小值附近的区间摆动(噪声很大),不会。随着学习率的衰减,步长会逐渐变小,因此最终。为了更加近似最小值,采用学习率衰减的方法。1 epoch = 遍历数据1次。是学习率衰减的超参数,是衰减常量,一般设置。
原创
发布博客 2024.01.21 ·
677 阅读 ·
8 点赞 ·
0 评论 ·
11 收藏

深度学习记录--RMSprop均方根

减缓纵轴方向学习速度,加快横轴方向学习速度,从而加速梯度下降。不妨以b为纵轴,w为横轴(横纵轴可能会不同,因为是多维量),即w每次减去一个大数字,所以w梯度下降更快。,即b每次减去一个小数字,所以b梯度下降更慢。为了防止分母趋近于0,则加上一个常量。为了让w梯度下降更快,则要使。为了让b梯度下降更慢,则要使。
原创
发布博客 2024.01.21 ·
423 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

深度学习记录--Adam optimization algorithm

需要经过多次调试之后才可得到。
原创
发布博客 2024.01.21 ·
501 阅读 ·
9 点赞 ·
0 评论 ·
7 收藏

深度学习记录--Momentum gradient descent

因为学习率过大可能导致偏离函数范围,这种上下波动导致学习率无法得到提高,速度因此减慢(下图蓝色曲线)横轴上,所有的微分都指向横轴方向,所有横轴方向上的平均值依然较大。其中dw,db可以看作加速度,v_dw,v_db可以看作速度,纵轴上,平均过程中正负数相互抵消,所以纵轴上的平均值接近于0。把图像比作一个碗,轨迹视为小球的轨迹,从边缘向碗内最低点运动。因此,小球会向着碗中心运动,最终因摩擦力而停下来。因此,纵轴上摆动减小,横轴上运动速度加快。为了减小波动,同时加快速率,可以使用。
原创
发布博客 2024.01.21 ·
510 阅读 ·
8 点赞 ·
0 评论 ·
6 收藏

深度学习记录--指数加权平均

较大时,初期数据拟合可能偏差较大,为了更好地拟合初期的数据,故采用偏差修正。当t变大,分母逐渐趋于1,所以后阶段偏差修正作用不大。的取值对拟合结果的影响很大,那么有什么规律?较大时,公式值较大,即取的更多数据的平均值。时,近似取10个数据平均值(红色曲线)时,近似取50个数据平均值(绿色曲线)时,近似取2个数据平均值(黄色曲线)变化时,拟合结果也会发生变化。,因为取的是更多数据的平均值。,因为取的是更少数据的平均值。可以被适当放大,更加拟合数据。如何对杂乱的数据进行拟合?表示第t-1个平均数,
原创
发布博客 2024.01.21 ·
813 阅读 ·
12 点赞 ·
0 评论 ·
8 收藏

深度学习记录--mini-batch gradient descent

与传统的batch梯度下降不同,mini-batch gradient descent将数据分成多个子集,分别进行处理,在。当size=m,mini-batch gradient descent变为batch gradient descent。的曲线,分成许多小段时,每个小段是一条batch gradient descent曲线,总体看这条曲线还是。可能容易计算,也可能很难计算,这就导致cost时高时低,出现摆动,其实主要是。每个样本都是随机的,可能靠近最小值,也可能远离最小值,当size=1,变为。
原创
发布博客 2024.01.19 ·
1239 阅读 ·
21 点赞 ·
0 评论 ·
19 收藏

链表存数相加算法(leetcode第2题)

使用头尾链表节点指针,用carry来存储进位值。
原创
发布博客 2024.01.19 ·
578 阅读 ·
15 点赞 ·
0 评论 ·
7 收藏

深度学习记录--梯度检验

对于单边误差和双边误差公式,其中双边误差与真实梯度相差更小,故一般采用双边误差公式。在每次迭代过程中,dropout会随机消除隐层单元的不同子集,J函数难以明确计算。为了对梯度进行检验,需要计算近似误差值来接近梯度。,则误差较大,需要考虑是否错误较多。梯度检验的计算时间较长,且通常在。的导数,计算出双边误差。,则误差很小,效果很好。,则误差一般,效果一般。
原创
发布博客 2024.01.17 ·
703 阅读 ·
6 点赞 ·
0 评论 ·
10 收藏

深度学习记录--梯度消失和爆炸

很大时,w与1之间的大小关系会产生梯度消失与梯度爆炸的问题。层数n越大,越要使特征值w变小。当神经网络层数很大时,即。
原创
发布博客 2024.01.17 ·
405 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏

深度学习记录--归—化输入特征

归化输入(normalizing inputs),对特征值进行一定的处理,可以加速神经网络训练速度。归化可以让原本狭长的数据图像变得规整,梯度下降的迭代次数减少,训练速度变快。通过x值更新让均值稳定在零附近,即为零均值化。
原创
发布博客 2024.01.17 ·
522 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

深度学习记录--正则化(regularization)

正则化(regularization)是一种实用的减少方差variance)的方法,也即避免过度拟合。
原创
发布博客 2024.01.17 ·
806 阅读 ·
24 点赞 ·
0 评论 ·
8 收藏

深度学习记录--偏差/方差(bias/variance)

train set error过大,dev set error过大(比train set error还大很多):high bias & high variance。train set error过大,dev set error过大(与train set error差不多):high bias。当方差(variance)过大时,如右图,拟合图像过于特殊,不够集中(即方差过大),称为过拟合(overfitting)train set error较小,dev set error过大:high variance。
原创
发布博客 2024.01.16 ·
666 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

深度学习记录--Train/dev/test sets

由于大数据量的存在,dev sets只需要对不同的算法进行验证与取舍即可,故得出几种合适的算法来优化性能即可,而test sets只需要对神经网络进行无偏评估即可,所以数据量不需要很大。对于超百万量级的数据,可以分为99.5% train sets 0.25% dev sets 0.25% test sets。对于百万量级的数据,可以分为98% train sets 1% dev sets 1% test sets。如果不需要进行无偏评估,那么只用保证train/dev sets(会加速神经网络的集成。
原创
发布博客 2024.01.15 ·
721 阅读 ·
7 点赞 ·
0 评论 ·
9 收藏

C语言程序设计期末例题复习

暂时写这么多,后续复习补充。
原创
发布博客 2024.01.09 ·
797 阅读 ·
16 点赞 ·
0 评论 ·
15 收藏

合并两个有序链表算法(leetcode第21题)

判断链表节点指向值大小,小的节点指针后移,进行递归,最终合并完成。,创建新链表,逐个存入新链表。
原创
发布博客 2023.12.21 ·
1018 阅读 ·
16 点赞 ·
0 评论 ·
8 收藏
加载更多