Python基于sklearn中的 scikit-image 通过 ssim计算图片相似度

准备

  1. 安装scikit-image
  2. package说明

代码实现样例

import cv2 as cv
from skimage.metrics import structural_similarity as ssim

path_= '1.jpg'
image1 = cv.imread(path_)
image1 = cv.cvtColor(image1,cv.COLOR_BGR2GRAY) #  将图像转换为灰度图

path_= '2.jpg'
image2 = cv.imread(path_)
image2 = cv.cvtColor(image2,cv.COLOR_BGR2GRAY) #  将图像转换为灰度图

sim = ssim(image1, image2)

print(sim)

运行结果

0.8584310332050927

图片展示

图1

在这里插入图片描述

图2

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值