面对人工智能的发展,人类该何去何从?

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Y2c8YpZC15p/article/details/79907204

640?wxfrom=5&wx_lazy=1


编者按:人工智能不断地突破着我们的想象力,AI系统也在快速地进入现实世界,这种情况下,人与机器该如何相处?微软研究院资深研究员Ece Kamar就人机互补表达了她的看法,并揭示了人们对AI的一些常见误解。她相信,机器善于识别和计算,人类长于决策和创造,人类和机器的合作会带来一个更好的未来。本文是Ece Kamar接受采访的文字精简版。想了解完整内容,请点击收听文中采访音频。


640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

微软研究院资深研究员Ece Kamar


采访音频:


我热衷于研究能在日常生活中帮助到人们的AI系统,同时,机器智能和人类智能之间应该如何互补也让我十分感兴趣。多年来,我们一直在尝试构建可以与人互动、合作,并能给人们带来帮助的系统。


目前,我们正处于人工智能历史上的一个重要时刻,许多重要的人工智能系统正在进入现实世界并开始与人们进行协作。AI该去做什么以及人类在AI开发的过程中该扮演什么样的角色这些问题都会对我们的生活产生很大的影响。


640.png?

正确认识人工智能


对于人工智能,人们其实存在很多误解与盲点。多数人都会认为AI是在过去十年左右才出现的。但事实上,AI在二十世纪五十年代就已经开始发展了。在达特茅斯会议上,人工智能的先驱们聚在一起,讨论着人工智能是什么、该如何定义并研究它。他们当时相信人工智能可以很快被实现——如果机器有能力处理某一项工作,它理应可以很快地掌握处理一项更难工作的能力。但遗憾的是,我们今天的AI并非如此,AI是一种垂直工作,我们只能将某些特定的技术应用到特定的任务中。我们离广义人工智能还非常遥远,目前的AI技术还很“专业”,所以要想将人工智能应用到每一个领域仍需要大量审慎的分析和工程设计。


我们的AI系统极度依赖数据,收集的数据的质量很大程度上决定了最后AI模型的表现。然而,目前的数据搜集工作还存在很多问题,我们搜集数据的时候通常会带有个人的主观想法和预设,所以搜集到的数据不总是能够真实代表这个世界,会导致模型产生知识盲区,例如人脸识别系统无法识别有深色皮肤的人群。所以,数据的不完整会导致AI系统无法有效地为某些少数人群服务。


640.png?

人类的角色


在人工智能时代,我们需要对AI开发流程进行改造。在传统的软件开发领域,几十年的经验积累让程序员们非常清楚每一次的bug修复所带来的结果。现在,我们也应该把这套标准带到AI系统开发领域。在过去的几年中,我们一直在尝试将人类的洞见融入到AI系统的调试和bug修复过程中,从人的角度去了解AI系统存在的问题和盲点,以及问题将会导致的后果,尝试如何通过融入人类智慧来改进AI系统不尽如人意的地方。


640?wx_fmt=jpeg


我想强调的是,人工智能是被人开发、由人推动、并为人所用的。人工智能不可能自己凭空诞生出来。人类其实是很多AI系统的指南针,比如计算机视觉、人脸识别等。我们在设计系统时,也会思考如何才能将作为“指南针”的人类融入到AI系统的训练、执行以及故障排除中。人类已经是AI过程的一部分,正是那些从事AI系统工作的工程师和科学家们将自己的见解放入这些系统的设计和架构中,才有了现在神奇的AI魔法。


AI有很多数据资源来源于人,AI的不断发展离不开人类的智慧。众包为AI系统提供了获取人类智能的方法。通过网上和社交平台上的众包任务,人们生产了大量AI系统可以用来学习的数据。这种能够连接机器和人类智能的渠道对我们构建包含人类因素的AI系统非常重要。另外,在AI的发展过程中也需要人们对AI系统的不断评估,毕竟最终AI是为人类服务的,而这也是众包可以发挥作用的领域。


640.png?

美好未来


我常常被AI领域外的人问道:“你能告诉我在未来的10年,20年内,美国将失去多少工作岗位,以及将会出现多少新工作吗?”实际上,我们离强人工智能还有很远的距离,我并不认为AI会自己变得更聪明,以至于将来所有的工作机会都会消失。与此同时,我们也要思考如何为可能发生的一些失业问题做好准备。


新的经济增长会在变化中出现,关键是要了解人和机器如何互补优势。机器可以很好地自动重复任务,擅长识别图案和处理规模任务,但是机器不擅长很多事情。人类擅长常识性事务,可以做反事实推理。我们可以利用小数据进行学习,并且举一反三,将其应用到我们以前从未见过的事情中去。最重要的是,我们有创造力。


在一篇关于麻省理工学院和哈佛大学合作研究的论文中提到,研究者让一台机器和放射科医师一起共同通过图像诊断乳腺癌,由于机器和人类会犯不同的错误,当两者共同合作时,诊断错误率会远远低于机器和人类单独诊断时的错误率。所以,只有我们充分利用人和机器的互补关系,才能创造人工智能的美好未来。


你也许还想


 张益肇:最看好AI在金融和医疗领域的应用

 人工智能创作的春天来了

 普通程序员要如何开发AI应用?


640.png?

感谢你关注“微软研究院AI头条”,我们期待你的留言和投稿,共建交流平台。来稿请寄:msraai@microsoft.com。


640.jpeg?


展开阅读全文

面对J2EE多层架构,ORACLE后台开发何去何从?

11-07

我不知道我的标题是否表达得准确,我只是想说: rn我是真诚的、热烈的赞成使用存储过程来进行一些应用的开发, rn尤其是对大量的数据进行大量的提取和对记录数据进行复杂的集合运算,存储过程对实现这样的业务逻辑有这无比的性能优势, rn有些人说调试是个问题,但现在有很多不错的工具可以对存储过程进行很方便的调试,如果再抛却数据库移植的考虑和代价, rn那存储过程的优势已经有很多贴子讨论过,就不必再多说了。 rnrn但有个问题,随着三层及多层结构的出现,更有.net和J2ee的逐渐流行, rn其极力主张将应用逻辑放在应用层,更有甚者,他们纯粹的把数据库作为一个存储数据的地方,能做到只用一个参数文件进行培植就可以实现数据库的移植(这样的系统我见过),我就很难想象这样的系统当用户量和数据量很大的时候系统能正常运行吗?用户可以接受它的效率吗?有没有如此经验的朋友告诉我答案? rnrn我就听说J2EE的CMP里面不再支持调用存储过程(BMP可以,我不熟悉J2EE), rnrn那么面对J2EE和.net的多层架构,数据库的后台开发该何去何从呢? rnrn其实不但是存储过程,还有很多的数据库特性,如ORACLE中的各种触发器, rn序列,分区表,聚合存储,多种类型的索引(有些根本就是ORACLE独有的),物化视图等, rn这些东西若使用得当可以极大改善应用系统的性能, rnrn而J2EE的标准是和这些有矛盾的吗? rn我该做何选择? rn这也是困惑我很久的问题!rnrn 论坛

我该何去何从

09-07

各位:我有一个很困扰的问题,请大家帮帮我,给我一些建议:rn以下是我的基本情况:rn 1.94年中山大学电脑应用专科毕业,到现在一直在某国有商业银行的支行从事电脑维护工作。rn 2.98年开始有意识地将工作重点从维护向软件开发(自学)转移。rn 3.这些年来,单位里是没有开发工作的。我只是自己主动地写了几个小程序,分别是《南海西部石油公司汇款申请书管理系统》、《ES9000/RBS代收代付格式转换引擎》、《历代诗词名句查询系统》(有4000条记录)。这些程序都是用VB写的,每个程序的编码量大概是21(天)*10(小时/天)。别人都说界面不错,自己觉得也是。只是觉得里面的东西都很基础,没有深度。rn 4.目前我最熟悉的是VB(可以自由地开发)。其次是C++(对语法及面向对象的概念有很深的理解,但没在VC++下搞过应用性开发)和JAVA。曾用softICE破解过几个软件。rn 5.我在读中央电大的“计算机科学与技术”本科专业,明年才毕业。rn 6.我喜欢开发,可我已经32岁了。rn 现在我想请教各位:根据我的情况,我还有没有必要在程序员的道路上走下去?走下去还能有所作为吗?尤其是我的年龄及水平,还适合搞开发吗?并且现在外面招聘都要35岁以下。rn 我现在很彷徨,不知何去何从,请大家给我点拨点拨。先谢谢大家了! 论坛

没有更多推荐了,返回首页