YEN_CSDN的博客

如果真的相信什么,就要用尽全力去让它发生。

机器学习-Hierarchical clustering 层次聚类算法

学习彭亮《深度学习基础介绍:机器学习》课程 假设有N个待聚类的样本,对于层次聚类来说,步骤: (初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度; 寻找各个类之间最近的两个类,把他们归为一类(这样类的总数就少了一个); 重新计算新生成的这个类与各个旧类之...

2018-01-21 16:37:33

阅读数:214

评论数:0

机器学习-Kmeans算法

学习彭亮《深度学习基础介绍:机器学习》课程 归类 聚类(clustering) 属于非监督学习 (unsupervised learning),无类别标记(class label) K-means 算法 Clustering 中的经典算法,数据挖掘十大经典算法之一 ...

2018-01-20 16:46:36

阅读数:128

评论数:0

机器学习-回归中的相关性(Correlation Coefficient)和R平方值算法

学习彭亮《深度学习基础介绍:机器学习》课程 皮尔逊相关系数 (Pearson Correlation Coefficient): 概念:衡量两个值线性相关强度的量 取值范围: [-1, 1]: 正向相关: >0, 负向相关: 计算公式: 相关 举例 ...

2018-01-19 15:25:15

阅读数:322

评论数:0

机器学习-非线性回归( Unlinear Regression) -逻辑回归(Logistic Regression)算法

学习彭亮《深度学习基础介绍:机器学习》课程 概率 定义 概率(Probability): 对一件事情发生的可能性的衡量 范围 0 计算方法 根据个人置信 根据历史数据 根据模拟数据 条件概率 即A在B发生的情况下的概率=AB同时发生的概率/...

2018-01-18 16:07:15

阅读数:245

评论数:0

机器学习-多元线性回归(Multiple Regression)算法

学习彭亮《深度学习基础介绍:机器学习》课程 与简单线性回归区别 简单线性回归:一个自变量(x) 多元线性回归:多个自变量(x) 多元回归模型 y=β0+β1x1+β2x2+ … +βpxp+ε 其中:β0,β1,β2… βp是参数 ε是误差值 多元回归方程 E(y...

2018-01-17 16:30:14

阅读数:185

评论数:0

机器学习-简单线性回归(Simple Linear Regression)算法

学习彭亮《深度学习基础介绍:机器学习》课程 准备 需要用到一些统计量: 平均值(mean) 中位数(median) 众数(mode) 方差(variance) 标准差(standard deviation) 概念 回归:(regression) Y变量为连续数值型(con...

2018-01-16 15:42:49

阅读数:117

评论数:0

机器学习-神经网络(Neural Network)算法

学习彭亮《深度学习基础介绍:机器学习》课程 背景 以人脑中的神经网络为启发,最著名的算法是1980年的backpropagation 多层向前神经网络(Multilayer Feed-Forward Neural Network) Backpropagation被使用在多层向前神经...

2018-01-15 17:24:12

阅读数:126

评论数:0

机器学习-支持向量机的SVM(Supprot Vector Machine)算法-linear inseparable

学习彭亮《深度学习基础介绍:机器学习》课程 概述 linear separable 线性可分 特性(优点) 训练好的模型的算法复杂度是由支持向量的个数决定的,若不是由数据的维度决定的。所以SVM不容易产生overfiting SVM训练出来的模型完全依赖于support v...

2018-01-12 15:51:55

阅读数:146

评论数:0

机器学习-支持向量机的SVM(Supprot Vector Machine)算法-linear separable

学习彭亮《深度学习基础介绍:机器学习》课程 机器学习一般框架 训练集 => 提取特征向量 => 结合一定算法(分类器:eg决策树,KNN) => 得到结果 SVM概述 深度学习出现之前,SVM被认为机器学习中近十几年来最成功的,表现最好的算法。 SVM要寻找区...

2018-01-11 17:14:20

阅读数:211

评论数:0

机器学习-临近取样(K-Nearest Nerghbor)KNN算法

学习彭亮《深度学习基础介绍:机器学习》课程 最邻近规则分类(K-Nearest Nerghbor),KNN算法概念 是分类(classification)算法 步骤 为了判断未知实例的类别,以所有已知实例的类别作为参考 选取参数K,选取它最近的已知实例进行归类,已知实例选择K个,K...

2018-01-10 16:15:28

阅读数:226

评论数:0

机器学习-决策树(decision tree)算法

学习彭亮《深度学习基础介绍:机器学习》课程 [toc] 决策树概念 决策树是一种用于监督学习的层次模型,由此,局部区域通过少数几步递归分裂决定。 决策树是一个类似流程图的树结构:其中每个结点表示在一个属性上测试,每个分支代表一个属性输出,每个树叶结点代表类或类分布。树的最顶层是根节点。...

2018-01-09 17:42:29

阅读数:128

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭