2022李宏毅作业开坑。

李宏毅老师2022有新课程啦 ,令人无比感动的是,李老师每年的课程都有跟以前不一样的内容,都有着新的方向和研究。 说明李宏毅老师也跟我们一起关注着新的科研进展(bushi,我没有),而且还做了新的ppt和课程给我们,着实令人感动。

第一次学李宏毅老师的课程时,懵懵懂懂,什么都不知道, 这次终于能听明白一点点内容了 ,当然也只是一点点罢了。 只听课是没有效果的,必须需要作业的辅助。所以我决定开一个李宏毅老师作业的系列专题,来记录我做的那些作业。

所谓开坑,也是对自己的一种鞭策嘛

后面我才发现 我做的都是2021的作业。 但也挺好的,因为2021的作业也挺有代表性

### 关于2022李宏毅机器学习课程作业的GitHub资源 对于2022年的李宏毅机器学习课程,其官方提供了丰富的教学材料和作业指导文档。这些资料可以通过台大《机器学习》课程官网获取[^1]。此外,在社区中也有许多发者整理并上传了相关的作业代码和解析到GitHub上。 #### 官方与第三方资源链接 - **官方课程网站**: 提供了详细的讲义、数据集以及编程环境配置指南等内容,具体地址为 https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.html。 - 社区维护版本可以参考如下仓库之一作为起点探索更多实用工具包实现方式: - GitHub 版本库路径:https://github.com/Fafa-DL/Lhy_Machine_Learning 这里包含了历年来的笔记总结及部分练习解答示例。 - Gitee 平台镜像站点同样适用国内访问者需求场景下快速检索所需素材:https://gitee.com/zzhzwh/Lhy_Machine_Learning。 #### 示例代码片段展示 以下是基于PyTorch框架完成回归预测任务的一个简单神经网络模型构建实例: ```python import torch from torch import nn, optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Sequential( nn.Linear(8, 64), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(64, 1) ) def forward(self, x): return self.fc(x) model = SimpleNet() criterion = nn.MSELoss() # Mean Squared Error Loss Function optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(num_epochs): model.train() running_loss = 0. for inputs, labels in train_loader: optimizer.zero_grad() outputs = model(inputs.float()) loss = criterion(outputs.squeeze(-1), labels.float()) loss.backward() optimizer.step() running_loss += loss.item()*inputs.size(0) print('Finished Training') ``` 此段脚本展示了如何定义一个基础全连接层结构并通过Adam优化器调整参数来最小化均方误差损失函数值的过程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值