【转载】 判断质数/素数——我知道的最快的方法

转载自:https://blog.csdn.net/songyunli1111/article/details/78690447

标准版:大部分人都知道的比较快的方法:判断从 2 到 sqrt(n) 是否存在其约数,时间复杂度 O(sqrt(n))

高配版:判断 2 之后,就可以判断从 3 到 sqrt(n) 之间的奇数了,无需再判断之间的偶数,时间复杂度 O(sqrt(n)/2)

尊享版:

首先看一个关于质数分布的规律:大于等于 5 的质数一定和 6 的倍数相邻。例如 5 和 7,11 和 13,17 和 19 等等;

证明:令 x≥1,将大于等于 5 的自然数表示如下:

··· 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ···

可以看到,不在 6 的倍数两侧,即 6x 两侧的数为 6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去 6x 本身,显然,素数要出现只可能出现在 6x 的相邻两侧。因此在 5 到 sqrt(n) 中每 6 个数只判断 2 个,时间复杂度 O(sqrt(n)/3)。

(有同学对这里的原理不理解的话,可以去参考我的另一篇原创《我理解的素数——约数求法》)

在高配版和尊享版中,都是一个剪枝的思想,高配版中裁剪了不必要的偶数,尊享版中裁剪了不和 6 的倍数相邻的数,虽然都没有降低时间复杂度的阶数,但都一定程度上加快了判断的速度。

在此给出尊享版 C++ 代码:

#include <iostream>  
#include <math.h>  
using namespace std;  
int isPrime(int n)  
{   //返回1表示判断为质数,0为非质数,在此没有进行输入异常检测  
    float n_sqrt;  
    if(n==2 || n==3) return 1;  
    if(n%6!=1 && n%6!=5) return 0;  
    n_sqrt=floor(sqrt((float)n));  
    for(int i=5;i<=n_sqrt;i+=6)  
    {  
        if(n%(i)==0 | n%(i+2)==0) return 0;  
    }
    return 1;  
}   
int main()  
{  
    int flag;  
    flag=isPrime(101);  
    cout<<flag<<endl;  
    return 0;  
}  
### 回答1: 判断一个数是否是素数是一种常见的问题,可以使用C/C++编程语言来解决。以下是一个简单的程序示例来判断一个数是否为素数。 ```c #include <stdio.h> int isPrime(int n) { if(n <= 1) { return 0; } for(int i = 2; i * i <= n; i++) { if(n % i == 0) { return 0; } } return 1; } int main() { int num; printf("请输入一个整数:"); scanf("%d", &num); if(isPrime(num)) { printf("%d 是素数\n", num); } else { printf("%d 不是素数\n", num); } return 0; } ``` 上述代码中,定义了一个函数`isPrime`来判断给定的数`n`是否为素数。函数首先判断了特殊情况,若`n`小于等于1,则不是素数,直接返回0;否则,使用一个循环从2开始到`n`的平方根(包括)进行迭代,判断`n`是否可以被迭代变量`i`整除,若能整除,则不是素数,返回0;若循环结束后仍然没有找到能整除`n`的数,则说明`n`是素数,返回1。 在`main`函数中,用户输入一个整数`num`,然后调用`isPrime`函数判断该数是否为素数,并输出相应的结果。 这是一个简单的判断素数的C/C++程序示例,可以帮助零基础学习者理解如何使用C/C++来解决这类问题。 ### 回答2: 要判断一个数是否是素数,可以采用遍历除法的方式。 首先,素数定义为大于1的正整数,因此如果输入的数小于或等于1,则它不是素数。 其次,对于大于1的正整数n,我们可以从2开始遍历到n的平方根,如果在这个区间内找到了n的因子,则n不是素数,否则n是素数。 具体方法如下: 1. 输入一个大于1的正整数n。 2. 判断n是否小于或等于1,如果是则输出"不是素数",结束程序;否则继续执行。 3. 从2开始遍历到n的平方根,依次将遍历的数赋值给变量i。 4. 判断n是否能被i整除,如果能被整除,则输出"不是素数",结束程序;否则继续执行。 5. 重复步骤4,直到i大于n的平方根。 6. 如果步骤4和步骤5都没有找到n的因子,则输出"是素数",结束程序。 例如,如果输入的数为63,按照上述步骤执行: 1. 输入63。 2. 63大于1,继续执行。 3. 从2开始遍历到√63≈7.93,依次将2、3、4、5、6赋值给变量i。 4. 63不能被2整除,继续执行。 5. 63不能被3整除,继续执行。 6. 63能被7整除,输出"不是素数",结束程序。 因此,63不是素数。 ### 回答3: 要判断一个数是否是素数,可以通过以下方法实现: 1. 首先,定义一个函数isPrime(num),用来判断num是否是素数。接受一个整数参数num,返回一个布尔值true或false。 2. 在isPrime函数中,首先判断num是否小于2,若是,则返回false,因为小于2的数都不是素数。 3. 接着,使用一个循环从2开始一直到num-1,判断num能否被某个数整除。若num能被任何一个小于它的数整除,则返回false。 4. 如果循环结束后仍然没有找到能整除num的数,那么num就是素数,返回true。 5. 在主函数中调用isPrime函数,输入要判断的数,即可得到判断结果。 以下是一个示例代码: ```c #include <stdio.h> #include <stdbool.h> bool isPrime(int num) { int i; if (num < 2) { return false; } for (i = 2; i < num; i++) { if (num % i == 0) { return false; } } return true; } int main() { int num; printf("请输入一个整数:"); scanf("%d", &num); if (isPrime(num)) { printf("%d是素数。\n", num); } else { printf("%d不是素数。\n", num); } return 0; } ``` 在主函数中,首先通过`scanf`函数获取要判断的整数,然后调用isPrime函数进行判断,根据返回结果输出相应的信息。以上代码可以用于判断一个数是否是素数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值