转载自:https://blog.csdn.net/songyunli1111/article/details/78690447
标准版:大部分人都知道的比较快的方法:判断从 2 到 sqrt(n) 是否存在其约数,时间复杂度 O(sqrt(n))
高配版:判断 2 之后,就可以判断从 3 到 sqrt(n) 之间的奇数了,无需再判断之间的偶数,时间复杂度 O(sqrt(n)/2)
尊享版:
首先看一个关于质数分布的规律:大于等于 5 的质数一定和 6 的倍数相邻。例如 5 和 7,11 和 13,17 和 19 等等;
证明:令 x≥1,将大于等于 5 的自然数表示如下:
··· 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ···
可以看到,不在 6 的倍数两侧,即 6x 两侧的数为 6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去 6x 本身,显然,素数要出现只可能出现在 6x 的相邻两侧。因此在 5 到 sqrt(n) 中每 6 个数只判断 2 个,时间复杂度 O(sqrt(n)/3)。
(有同学对这里的原理不理解的话,可以去参考我的另一篇原创《我理解的素数——约数求法》)
在高配版和尊享版中,都是一个剪枝的思想,高配版中裁剪了不必要的偶数,尊享版中裁剪了不和 6 的倍数相邻的数,虽然都没有降低时间复杂度的阶数,但都一定程度上加快了判断的速度。
在此给出尊享版 C++ 代码:
#include <iostream>
#include <math.h>
using namespace std;
int isPrime(int n)
{ //返回1表示判断为质数,0为非质数,在此没有进行输入异常检测
float n_sqrt;
if(n==2 || n==3) return 1;
if(n%6!=1 && n%6!=5) return 0;
n_sqrt=floor(sqrt((float)n));
for(int i=5;i<=n_sqrt;i+=6)
{
if(n%(i)==0 | n%(i+2)==0) return 0;
}
return 1;
}
int main()
{
int flag;
flag=isPrime(101);
cout<<flag<<endl;
return 0;
}