数据猿&爱数圈——数据科学学习社区系列课程应用篇(二)——推荐模型的前世今生

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

课程介绍:


推荐算法从最古老的购物车分析,一直进展到现在基于相似性的协同式过滤,然而基于深度学习的向量化推荐即将引燃第三代的推荐算法革命,本课程中将会与各位分享推荐算法三阶段的思路逻辑,数据分析系列课程是一个培训性质的在线课程,针对数据分析、挖掘技术在某一具体场景中的应用进行深度分享。


课程亮点:


让听众掌握推荐算法演进的基本思路,针对现行推荐算法的问题提出可能的改良方向,综合几代推荐算法的优缺点,在实际工作中自由掌握和运用最适合自身业务问题的推荐算法。


课程目标:


从数据挖掘到深度学习,推荐算法的演进脉络一次掌握。


课程讲师:


640?wx_fmt=jpeg


尹相志 DeepBelief.ai 首席数据科学家


1994年国际奥林匹亚化学竞赛世界银牌,16年大数据从业经验,2002年于创立台湾第一家专业大数据公司asiaMiner,台湾微软特约讲师与2006~2017连续11年最有价值专家(MVP),曾任华院数据首席数据科学家,中国首届人工智能竞赛BOT(Brain of Things) 2016 Shanghai发起人以及赛题设计。


课程提纲:


1.产品推荐商业问题需求与挑战


2.第一代:购物篮分析


3.第二代:协同式过滤


4.第三代:深度学习向量化匹配


5.算法改进思路与应用策略


适合人群:


  • 有一定的数据分析基础,比如已经从事数据分析工作1年以上,或学习过数据分析入门,机器学习入门等数据分析入门级课程。


参与方式:


了解更多课程信息

长按扫描二维码报名

640?wx_fmt=jpeg


课程咨询:


Grace18601297396 (手机/微信)

Sophia:18801471276(手机/微信)


数据猿&爱数圈 数据科学学习社区简介


本学习社区由数据猿和爱数圈联合打造。我们遍寻国内外数据领域专家、学者、以及业界优秀企业,从中发现并邀请最适合的人成为我们的授课讲师,他们或是对趋势有高鹜建瓴的学者专家;或是在实战上有丰富基奠的一线从业者;或是两者兼具的创业家、创新者。


在这个社区里我们相信用“数据掘金未来”,在人类社会数字化进程中,越来越多的数据急切地等着数据科学去利用,去创造价值。我们高鹜建瓴但脚踏实地,不高谈阔论理论但却用趋势指导我们的构建;我们追求科技却兼顾实用,不只追求极客而是用极客精神去解决真实的业务问题。


我们从数据科学的认知篇、工具篇、应用篇、实战篇,逐步展开与丰富课程体系,希望与业者以及数据的爱好者们,共同学习和进步,成为数字经济中一支不可忽视的力量。



课程支持方:DeepBelief.ai


尹相志Deepbelief人工智能科学家。1994年国际奥林匹亚化学竞赛世界银牌,16年大数据从业经验,2002年于创立台湾第一家专业大数据公司asiaMiner,台湾微软特约讲师与2006~2017连续11年最有价值专家(MVP),曾任华院数据首席数据科学家,中国首届人工智能竞赛BOT(Brain of Things) 2016 Shanghai发起人以及赛题设计。
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页