SGNN算法解析:更新和传播组件的Python实现

186 篇文章 ¥59.90 ¥99.00
本文深入探讨了SGNN(Structured Graph Neural Network)算法的更新和传播组件,介绍了如何利用Python实现这两个关键部分。文章通过定义包含线性层与ReLU激活函数的神经网络模型,阐述了如何融合节点特征与隐藏状态,以及如何处理节点间的邻接矩阵,以实现图的动态更新。提供的示例代码展示了如何实际应用这些组件来构建和操作SGNN模型。

SGNN(Structured Graph Neural Network)是一种用于动态图算法的模型,它能够有效地处理图结构中的变化和更新。本文将介绍SGNN算法的更新组件和传播组件,并提供相应的Python代码实现。

更新组件的实现:

import torch
import torch.nn as nn

class UpdateComponent(nn.Module):
    def __init__(self, input_dim
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值