SGNN(Structured Graph Neural Network)是一种用于动态图算法的模型,它能够有效地处理图结构中的变化和更新。本文将介绍SGNN算法的更新组件和传播组件,并提供相应的Python代码实现。
更新组件的实现:
import torch
import torch.nn as nn
class UpdateComponent(nn.Module):
def __init__(self, input_dim
本文深入探讨了SGNN(Structured Graph Neural Network)算法的更新和传播组件,介绍了如何利用Python实现这两个关键部分。文章通过定义包含线性层与ReLU激活函数的神经网络模型,阐述了如何融合节点特征与隐藏状态,以及如何处理节点间的邻接矩阵,以实现图的动态更新。提供的示例代码展示了如何实际应用这些组件来构建和操作SGNN模型。
SGNN(Structured Graph Neural Network)是一种用于动态图算法的模型,它能够有效地处理图结构中的变化和更新。本文将介绍SGNN算法的更新组件和传播组件,并提供相应的Python代码实现。
更新组件的实现:
import torch
import torch.nn as nn
class UpdateComponent(nn.Module):
def __init__(self, input_dim
767

被折叠的 条评论
为什么被折叠?