主成分分析(PCA)和奇异值分解(SVD)的区别及应用(Python实现)

186 篇文章 ¥59.90 ¥99.00
本文介绍了PCA和SVD这两种降维技术,详细阐述了它们的计算过程、应用场景和区别,并提供了Python代码示例。PCA是无监督学习方法,主要用于数据的特征提取和可视化,而SVD则更通用,常用于矩阵分解和推荐系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习和数据分析领域,主成分分析(Principal Component Analysis,PCA)和奇异值分解(Singular Value Decomposition,SVD)是两种常见的降维技术。它们可以帮助我们从高维数据中提取有用的信息,并减少数据的维度,从而简化问题和加快计算。本文将详细介绍PCA和SVD的区别,并用Python实现它们。

  1. 主成分分析(PCA)

PCA是一种无监督学习方法,用于降低数据的维度。它通过线性变换将原始数据投影到一个新的低维空间中,使得投影后的数据保留尽可能多的原始数据的方差。PCA的主要步骤如下:

  • 对数据进行去均值处理,使得数据的均值为0。
  • 计算数据的协方差矩阵。
  • 对协方差矩阵进行特征值分解,得到特征值和特征向量。
  • 根据特征值对特征向量进行排序,选择前k个特征向量作为主成分(k为降维后的维度)。
  • 将原始数据投影到选取的主成分上,得到降维后的数据。

下面是用Python实现PCA的代码示例:

import numpy as np

def pca(X
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值