在机器学习和数据分析领域,主成分分析(Principal Component Analysis,PCA)和奇异值分解(Singular Value Decomposition,SVD)是两种常见的降维技术。它们可以帮助我们从高维数据中提取有用的信息,并减少数据的维度,从而简化问题和加快计算。本文将详细介绍PCA和SVD的区别,并用Python实现它们。
- 主成分分析(PCA)
PCA是一种无监督学习方法,用于降低数据的维度。它通过线性变换将原始数据投影到一个新的低维空间中,使得投影后的数据保留尽可能多的原始数据的方差。PCA的主要步骤如下:
- 对数据进行去均值处理,使得数据的均值为0。
- 计算数据的协方差矩阵。
- 对协方差矩阵进行特征值分解,得到特征值和特征向量。
- 根据特征值对特征向量进行排序,选择前k个特征向量作为主成分(k为降维后的维度)。
- 将原始数据投影到选取的主成分上,得到降维后的数据。
下面是用Python实现PCA的代码示例:
import numpy as np
def pca(X