Transformers 核心设计Auto Classes
Transformers Auto Classes 设计:统一接口、自动检索
AutoClasses 旨在通过全局统一的接口 from_pretrained() ,实现基于名称(路径)自动检索预训练权重(模
型)、配置文件、词汇表等所有与模型相关的抽象。

灵活扩展的配置AutoConfig
transformers.AutoConfig 类实例化通常由from_pretrained(pretrained_model_name_or_path, ) 方法完成。
Transformers 根据配置中的 model_type 加载预定义配置,兜底方案是基于模型名称/路径自动推断。
自动化模型管理 AutoModel
transformers.AutoModel 类实例化通常由from_pretrained() 或 from_config() 方法完成。
换句话说,Transfor
本文介绍了Transformers模型的量化技术,包括Auto Classes的设计,如AutoConfig、AutoModel和AutoTokenizer,以及模型量化方法,如GPTQ和AWQ。GPTQ是一种针对大型GPT模型的量化技术,能显著减少模型大小和计算需求,而AWQ通过保护少量关键权重,减少量化误差。文章还提到了BitsAndBytes库,用于8位和4位模型量化。
订阅专栏 解锁全文
701

被折叠的 条评论
为什么被折叠?



