18.实战 LLaMA2-7B 指令微调 Pre-Training 和 Fine-Tuning是深度学习,特别是在自然语言处理(NLP)领域中,训练大模型(如LLaMA、GPT、Gemini等)的两个关键步骤。这两个步骤共同构成了一种有效的策略,用于利用大量未标记数据学习通用知识,然后通过少量标记数据将这些知识应用于特定任务。Pre-Training是指在大量未标记数据上训练深度学习模型的过程。这一步骤的目的是使模型能够学习到数据的通用特征和模式,从而捕获语言的基本语法和语义信息。
17.Meta AI 大模型家族 LLaMA 在训练 65B 模型时,Meta 代码在2048个A100 GPU(80GB)上处理速度约为380 tokens/sec/GPU。这意味着在1.4T Tokens。数据集上训练需要约21天。LLaMA 1:小模型+大数据。Llama 2 基座模型是在。上 进行 RLHF 训练得到。上 进行 RLHF 训练得到。
15.混合专家模型(MoEs)技术揭秘 这种设计对大规模计算尤其有利:当模型扩展到多个设备时,MoE层在这些设备间共享,而其他层则在每个设备上独立存在。如果两个专家的处理能力都已达到上限,那么这个 Token 就会被认为是多余的,并通过残差连接传递到下一层,或在某些情况下被直接丢弃。注:在模型编译时所有的张量形状(Tensor Shape)都是静态确定的,但无法预先知道每个专家将处理多少Token,因此需要设定一个固定的处理能力上限。:在 top-2 设计中,我们始终选择表现最优的专家,但第二选择的专家则根据其权重以一定概率被选中。
14.基于人类反馈的强化学习(RLHF)技术详解 先收集⼀个提示词集合,并要求标注⼈员写出⾼质量的回复,然后使⽤该数据集以监督的⽅式微调预训练的基础模型。对这⼀步的模型,OpenAI 在其第⼀个流⾏的 RLHF 模型 InstructGPT 中使⽤了较⼩版本的 GPT-3;这⼀模型接收⼀系列⽂本并返回⼀个标量奖励,数值上对应⼈的偏好。首先,该策略 (policy) 是一个接受提示并返回一系列文本 (或文本的概率分布) 的 LM。这个策略的行动空间 (action space) 是 LM 的词表对应的所有词元 (一般在 50k 数量级)