AcWing 143. 最大异或对
1、题目(来源于AcWing):
在给定的N个整数A1,A2……AN中选出两个进行xor(异或)运算,得到的结果最大是多少?
输入格式
第一行输入一个整数N。
第二行输入N个整数A1~AN。
输出格式
输出一个整数表示答案。
数据范围
1≤N≤105,
0≤Ai<231
输入样例:
3
1 2 3
输出样例:
3
2、基本思想:
①异或运算(xor):
二进制两数不同时为1,相同时为0,比如1100 ^ 10 = 1110
②将暴力算法优化,将i个数转换成二进制,并用Trie数存储。从a0到a(i-1)中找到与x异或的最大值(每一个二进制数从最高位开始,沿着Trie数一直往下找,尽量找到第二个与它不同的数,比如110010最好能找到001101,但是这第二个数要在指定的数当中),时间复杂度为O(1),则只需找31次。
3、步骤:
4、C++代码如下(该代码引用AcWing网站的代码):
#include <iostream>
using namespace std;
const int N = 100010, M = 3000000;//每个数有31位长,最多有100000个数,Trie树可能有3100000层,所以M是3000000,大一点更保险
int n;
int a[N], son[M][2], idx;
void insert(int x)
{
int p = 0;
for (int i = 30; i >= 0; i -- )
{
int &s = son[p][x >> i & 1];//int &s,C++里的引用,和指针类似,定义的变量和赋值的变量指向同一块内存,一个改变,另一个也会改变,另外这里的s只是为了简化写法,可以直接用son[p][x >> i & 1]代替。x >> i & 1用于判断x的第i位是否是1,是1为真。
if (!s) s = ++ idx;
p = s;
}
}
int search(int x)
{
int p = 0, res = 0;
for (int i = 30; i >= 0; i -- )
{
int u = x >> i & 1;
if (son[p][!u])
{
res += 1 << i;//将不同的那一位变成1(将1左移i位)
p = son[p][!u];
}
else p = son[p][u];
}
return res;
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
scanf("%d", &a[i]);
insert(a[i]);
}
int res = 0;
for (int i = 0; i < n; i ++ ) res = max(res, search(a[i]));
printf("%d\n", res);
return 0;
}
//作者:yxc
//链接:https://www.acwing.com/activity/content/code/content/45284/
//来源:AcWing
//著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。