infinitesimal generator matrix

本文详细介绍了概率论中连续时间马尔科夫链的转移率矩阵,也称为强度矩阵或无穷小生成矩阵。文章解释了矩阵元素如何描述状态间瞬时转换的速率,并给出了矩阵定义条件及一个M/M/1排队系统的具体例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transition rate matrix (Redirected from Infinitesimal generator matrix)

In probability theory, a transition rate matrix (also known as an intensity matrix or infinitesimal generator matrix) is an array of numbers describing the instantaneous rate at which a continuous time Markov chain transitions between states.

In a transition rate matrix Q (sometimes written A) element q i j q_{ij} qij (for i ≠ j) denotes the rate departing from i and arriving in state j. Diagonal elements q i i q_{ii} qii are defined such that

q i i = − ∑ j ≠ i q i j . q i i = − ∑ j ≠ i q i j {\displaystyle q_{ii}=-\sum _{j\neq i}q_{ij}.}q_{ii} = -\sum_{j\neq i} q_{ij} qii=j=iqij.qii=j=iqij.
and therefore the rows of the matrix sum to zero (see condition 3 in the definition section).

Definition
A Q matrix (qij) satisfies the following conditions[5]
在这里插入图片描述
This definition can be interpreted as the Laplacian of a directed, weighted graph whose vertices correspond to the Markov chain’s states.

Example
An M/M/1 queue, a model which counts the number of jobs in a queueing system with arrivals at rate λ and services at rate μ, has transition rate matrix

Q = ( − λ λ μ − ( μ + λ ) λ μ − ( μ + λ ) λ μ − ( μ + λ ) λ ⋱ ) . {\displaystyle Q={\begin{pmatrix}-\lambda &\lambda \\\mu &-(\mu +\lambda )&\lambda \\&\mu &-(\mu +\lambda )&\lambda \\&&\mu &-(\mu +\lambda )&\lambda &\\&&&&\ddots \end{pmatrix}}.} Q=λμλ(μ+λ)μλ(μ+λ)μλ(μ+λ)λ.

<think>好的,用户的问题是关于如何理解期刊中的一句话:“Define the infinitesimal operator $\mathcal{L}$ of $V(t)$ as”,并询问如何翻译。我需要先确认用户的具体需求。 首先,用户可能正在阅读学术论文,特别是数学或控制理论相关的领域,比如随机微分方程或动力系统。这里的“infinitesimal operator”通常指的是无穷小生成元,常见于随机过程中的李雅普诺夫函数分析。用户可能遇到了翻译上的困难,或者不理解这个术语在上下文中的具体含义和应用。 接下来,用户提到需要翻译这个句子。正确的翻译应该准确传达数学概念,同时符合中文学术写作的习惯。这里“infinitesimal operator”应译为“无穷小生成元”,而“V(t)”可能是一个李雅普诺夫函数,用于稳定性分析。因此,整个句子可以翻译为“将V(t)的无穷小生成元$\mathcal{L}$定义为”。 然后,我需要解释这个定义的意义。无穷小生成元在随机过程中用来描述函数在随机扰动下的平均变化率,尤其是在随机稳定性分析中,用于判断系统的收敛性或稳定性。例如,对于伊藤过程,生成元会包含漂移项和扩散项的贡献。 用户可能的深层需求是理解该术语在论文中的角色,以便正确应用或继续研究。可能需要进一步解释如何具体计算$\mathcal{L}V(t)$,或者它在系统稳定性证明中的使用。此外,用户可能希望确保翻译后的句子在中文期刊中表达准确,避免术语混淆。 最后,我需要验证回答是否涵盖了翻译、定义解释和应用场景,确保用户能够全面理解该句子在上下文中的意义,并正确应用于自己的研究中。同时,确认使用正确的LaTeX格式,符合学术规范。</think>在数学与控制理论领域的期刊文献中,该语句的标准翻译和解释如下: ### 标准翻译 $$ \boxed{\text{将}V(t)\text{的无穷小生成元}\mathcal{L}\text{定义为}} $$ ### 专业释义 1. **数学内涵** $\mathcal{L}$是随机微分方程中的关键微分算子,其作用可表示为: $$ \mathcal{L}V(t) := \lim_{\Delta t \to 0} \frac{\mathbb{E}[V(t+\Delta t)|\mathcal{F}_t] - V(t)}{\Delta t} $$ 其中$\mathbb{E}$表示条件期望,$\mathcal{F}_t$为到时刻$t$的$\sigma$-代数 2. **物理意义** 该算子表征了函数$V(t)$沿随机过程的平均变化率,在稳定性分析中常用于构造: $$ \begin{aligned} &\text{随机李雅普诺夫函数} \\ &\text{收敛性判据} \\ &\text{不变测度分析} \end{aligned} $$ 3. **典型应用场景** - 伊藤过程:$\mathcal{L}V = V_t + fV_x + \frac{1}{2}\text{tr}(g^TV_{xx}g)$ - 马尔可夫链:$\mathcal{L}V(i) = \sum_{j} q_{ij}(V(j)-V(i))$ - Lévy过程:含跳跃积分项的扩展形式 ### 文献中的规范表达 在中文期刊中,推荐采用以下排版格式: ```latex \begin{theorem} 设$\mathcal{L}$为$V(t)$的无穷小生成元,定义为: $$ \mathcal{L}V(t) = \frac{\partial V}{\partial t} + \nabla V \cdot f(x) + \frac{1}{2}\text{tr}(g^T(x)\nabla^2 V g(x)) $$ \end{theorem} ``` ### 重要注意事项 1. 算子符号$\mathcal{L}$需使用\mathcal字体 2. 定义时应显式说明所考虑的随机过程类型(如:Itô diffusion, Poisson process等) 3. 在中文文献中需保持符号体系与原文一致,必要时添加注释: ```latex % 生成元(generator)亦称无穷小算子(infinitesimal operator) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值