怎样处理缺失数据(二)处理缺失数据基本方法分类

处理缺失数据的方法可分为以下几类:

1. 只保留观察数据 (Procedures based on completely recorded units)

这种方法去除所有在某一变量上有缺失数据的纪录,只保留所有数据完整的纪录。
优点:容易实施
缺点:只适用于缺失数据较少的数据,可能产生较大误差。

2. 加权 (Weighting procedures)

这种方法也是通过对现有未缺失数据通过以下公式进行加权处理

  y ˉ H K = ∑ i = 1 n ( π i p ^ i ) − 1 y i ∑ i = 1 n ( π i p ^ i ) − 1 \ \bar y_{HK} = \frac{\sum_{i=1}^n (\pi_i \hat p_i)^{-1}y_i}{\sum_{i=1}^n (\pi_i \hat p_i)^{-1}}  yˉ

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值