💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:传统的线性判别分析(LDA)模型存在一些挑战,比如对异常值的敏感性、类内散布矩阵奇异性问题以及对同一类别数据的高斯假设。本文提出了一种鲁棒的LDA方法,旨在解决对异常值和奇异性问题的敏感性。具体而言,我们首先使用贝叶斯风险来设计所提出的方法的优化问题。然后,所提出的基于密度的LDA(DLDA)方法利用数据密度作为先验知识,以提高对异常值的鲁棒性。该方法可以对非线性和多模态分布的数据集进行分类。此外,所提出的方法可以利用AdaBoost方法进行大数据分类。对合成和真实数据集的实验结果表明,所提出的DLDA方法在竞争方法中具有显著优势。
📚2 运行结果
部分代码:
function [res, confusionMat]=measureEx(trueLable,predLabel,measurement,confusionMat)
% Some Popular Measurements
% {case-insensitive}
% {0, F, F-Measure}==> F-Measure
% {1, P, Precision}==> Precision
% {2, R, Recall}==> Recall
% {3, TP, True Positive Rate}==> True Positive Rate
% {4, FP, False Positive Rate}==> False Positive Rate
% {5, Se, Sensitivity}==> Sensitivity
% {6, Sp, Specificity}==> Specificity
% {7, TN, True Negative Rate}==> True Negative Rate
% {8, ACC}}==> Accuracy
% {9, N}}==> NMI (Normalized Mutual Information)
% {10, RI}}==> Rand-Index
% {11, ARI}}==> Adjusted Rand-Index
% {12, C}}==> Confusion Matrix
% <Default is 0>
if exist('measurement','var')
measurement=lower(num2str(measurement));
else
measurement=0;
end
if ~exist('confusionMat','var')
confusionMat=confusionmat(trueLable,predLabel);
end
K=size(confusionMat,1);
switch measurement
case {0, 'f', 'f-measure'}
p=diag(confusionMat)'./sum(confusionMat);
r=diag(confusionMat)./sum(confusionMat,2);
res=2*(p.*r')./(p+r');
case {'1' 'p' 'precision'}
res=diag(confusionMat)'./sum(confusionMat);
case {'2' 'r' 'recall'
'3' 'tp' 'true positive rate'
'5' 'se' 'sensitivity'}
res=diag(confusionMat)./sum(confusionMat,2);
case {'4' 'fp' 'false positive rate'}
res=zeros(1,K);
for i=1:K
res(i)=(sum(confusionMat(:,i))-confusionMat(i,i))/sum(sum(confusionMat([1:i-1 i+1:end],:)));
end
case {'6' 'sp' 'specificity'
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。