👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
摘要:
这项工作考虑了一种通用的全耦合自主水下航行器(AUV),用于应用非线性次优控制。在大多数情况下,AUV模型是非线性和控制仿射的,尤其是在没有对方向舵和鳍进行建模的情况下。这项工作的目的是解决非线性非仿射AUV在实现控制器方面的挑战,因为控制设计的这一方面在这一研究领域很少受到关注。NPS II是一种众所周知的AUV,在非线性非仿射建模研究中经常被提及。考虑将此模型应用于具有非仿射结构的状态相关里卡蒂方程 (SDRE) 控制器,用于生成次优路径的点对点运动。此外,提供控制、设计和仿真结果时无需对整个系统进行任何简化或解耦。本文的设计方法在NPS II上实现;尽管如此,这种观点可以在使用相同技术的任何AUV上实现。
关键字 SDRE;非仿射控制;非线性;六自由度 ;AUVNPS II
1. 引言
如今,一方面,自主水下机器人(AUV)在石油、军事、测绘、控制与检查以及救援等行业中有许多应用。另一方面,这些模型受到强非线性、不确定性和未知参数的影响,这些因素使得这些模型成为研究人员感兴趣的案例研究对象。考虑到 AUV 的复杂行为以及为水下六自由度(六-DOF)模型设计控制器的限制,已经进行了一些简化,例如线性化和解耦,以克服复杂性;然而,实际测试表明,由于这些简化,性能有所降低(Kokegei 等,2008)。此外,这也影响了安装在 AUV 上的机械臂或其他设备的交互任务的效率(Antonelli,2006)。
Fjellstad 和 Fossen(1994)发表了一项关于使用自适应控制方法对 AUV 进行六自由度位置和姿态控制的研究。自适应积分控制方法也被用于控制 ODIN(Antonelli,2007)。其他研究应用了滑模控制和后退技术来控制水下航行器(Kokegei 等,2011;Rezazadegan 和 Shojaei,2013)。
在本研究中,通过具有非仿射结构的状态依赖 Riccati 方程,研究了 AUV NPS II 在位置和姿态控制(六-DOF)中的控制问题。选择该模型的原因如下:(I)已知其动力学模型及其水动力学参数(Fossen,1994)。(II)在这种情况下,执行器模型使系统非仿射(具有控制非线性)。输入向量包括舵和鳍的变化以及推进器的转速,每个都有饱和限制。
SDRE(状态依赖 Riccati 方程)被用于控制 AUV,特别是潜航计划控制(Naik 和 Singh,2007;Pan 和 Xin,2012;Yim 和 Oh,2003;Yan 等,2012;Jantapremjit 和 Wilson,2007)。在上述研究中,模型被解耦以实现最优控制,或者忽略了非仿射项。在早期研究中,Wernli 和 Cook(1975)在 SDRE 领域引入了非仿射结构,并应用泰勒级数展开来证明系统的稳定性。Çimen 和 Banks(2004)提出了用于解决非线性非仿射系统的 Riccati 方程的近似序列。SDRE 用于这种类型系统的在线控制更新公式被表达并实现(Beeler,2004;Rafee Nekoo,2012;Rafee Nekoo 和 Geranmehr,2013)。
本研究的主要贡献是:在六-DOF 的 AUV 控制中,使用 SDRE 控制器在非仿射结构中,而无需简化或解耦。
文章的其余部分安排如下:第 2 节表达 AUV 的数学模型;第 3 节介绍控制器的结构;第 4 节介绍在模型上实现 SDRE;第 5 节提供仿真结果;最后,第 6 节表达结论。
2. AUV 的数学建模
AUV 的系统动力学是非线性、耦合和时变的。这归因于许多参数的考虑,例如水动力阻力、阻尼和升力,科里奥利力和向心力,重力,浮力和推力(Fossen,1994)。
2.1 坐标系和运动参数定义
建立了特殊的参考系来描述 AUV 的运动,并建立一个六-DOF 非线性数学模型。模型中应用的两个参考系是固定参考系(地球或惯性坐标系)和运动参考系(机体固定坐标系),如图 1 所示。
根据 SNAME(1950)定义的量,并在表 1 中显示。根据这一表示法,海洋航行器在六-DOF 中的一般运动可以通过以下向量描述:
结论
本研究提出了一种通用方法,用于在非仿射结构中通过状态依赖 Riccati 方程设计次优控制。选择了 AUV NPS II 来实现 SDRE,因为该模型具有非仿射结构。SDC 参数化和权重矩阵的选择被表达为设计指南。仿真结果表明,这种方法可以控制完全耦合的六自由度系统,实现点对点运动(调节)和轨迹跟踪。考虑到非仿射系统,推进器的转速可以被视为输入信号,并且其极限的变化(在运动的起始点和结束点趋于零)可以解决上述问题之一:解耦系统并从输入向量中移除推进速度。
📚2 运行结果
部分代码:
xin13=0; %delta_r
xin14=0; %delta_s
xin15=0; %delta_b
xin16=0; %delta_bp
xin17=0; %delta_bs
xin18=100; %n
L=5.3; %The length of the AUV (m)
g=9.81; % (m/s^2)
rho=1000; %density of water (kg/m^3)
m=5454.54; %The mass of the AUV (kg)
W=53400; %weight (N)
Buoy=53400; %buoyancy (N)
Ix=2038;Iy=13587;Iz=13587; % (Nms^2)
Ixy=-13.58;Iyz=-13.58;Ixz=-13.58; % (Nms^2)
xG=0;yG=0;zG=0.061;
xB=0;yB=0;zB=0;
I_O=[Ix,-Ixy,-Ixz;...
-Ixy,Iy,Iyz;...
-Ixz,-Iyz,Iz];
r_G=[xG;yG;zG];
r_B=[xB;yB;zB];
%Non-Dimensional Hydrodynamic coefficients---------------------------------
Xpp=7.0e-3;Xqq=-1.5e-2;Xrr=4.0e-3;Xpr=7.5e-4;
Xudot=-7.6e-3;Xwq=-2.0e-1;Xvp=-3.0e-3;Xvr=2.0e-2;
Xqds=2.5e-2;Xqdb2=-1.3e-3;Xrdr=-1.0e-3;Xvv=5.3e-2;
Xww=1.7e-1;Xvdr=1.7e-3;Xwds=4.6e-2;Xwdb2=0.5e-2;
Xdsds=-1.0e-2;Xdbdb2=-4.0e-3;Xdrdr=-1.0e-2;Xqdsn=2.0e-3;
Xwdsn=3.5e-3;Xdsdsn=-1.6e-3;Xu=0;
Ypdot=1.2e-4;Yrdot=1.2e-3;Ypq=4.0e-3;Yqr=-6.5e-3;
Yvdot=-5.5e-2;Yp=3.0e-3;Yr=3.0e-2;Yvq=2.4e-2;
Ywp=2.3e-1;Ywr=-1.9e-2;Yv=-1.0e-1;Yvw=6.8e-2;
Ydr=2.7e-2;
Zqdot=-6.8e-3;Zpp=1.3e-4;Zpr=6.7e-3;Zrr=-7.4e-3;
Zwdot=-2.4e-1;Zq=-1.4e-1;Zvp=-4.8e-2;Zvr=4.5e-2;
Zw=-3.0e-1;Zvv=-6.8e-2;Zds=-7.3e-2;Zdb2=-1.3e-2;
Zqn=-2.9e-3;Zwn=-5.1e-3;Zdsn=-1.0e-2;
Kpdot=-1.0e-3;Krdot=-3.4e-5;Kpq=-6.9e-5;Kqr=1.7e-2;
Kvdot=1.2e-4;Kp=-1.1e-2;Kr=-8.4e-4;Kvq=-5.1e-3;
Kwp=-1.3e-4;Kwr=1.4e-2;Kv=3.1e-3;Kvw=-1.9e-1;
Kdb2=0;Kpn=-5.7e-4;Kprop=0;
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。