李宏毅 - 课程笔记及作业解答 - 汇总 -- 更新中

1. 机器学习课程 ML

课程笔记:

章节简介
1 - Introduction & next step机器学习介绍 & 机器学习下一步
2 - Regression + Demo回归 & 示例代码
3 - Bias & Variance偏差和方差
4 - Gradient Descent梯度下降方法
5 - Classification分类
6 - Logistic Regression对数几率回归(逻辑回归)
7 - Deep Learning深度学习介绍
8 - Backpropagation反向传播
9 - Keras DemoKeras代码示例
10 - Tips for Training DNN深度学习技巧
11 - Keras Demo2 & Fizz BuzzKeras代码优化
12 - CNN卷积神经网络
13 - Why Deep为什么要用深度学习
14 - Simi Supervised Learning半监督学习
16 - Word Embedding词嵌入表示
18 - Auto Encoder自编码器
Explainable ML可解释性机器学习
TransformerTransformer及注意力机制
ELMO、BERT、GPTELMO、BERT、GPT-2、ERNIE

课后作业:

Week 1: 矩阵运算,图片操作

Week 2: CEO利润预测

论文阅读:

An overview of gradient descent optimization algorithms

参考资料:

李宏毅 2017 机器学习课程,哔哩哔哩

李宏毅 2019 机器学习前沿内容,哔哩哔哩

datawhale LeeML-Notes

李宏毅 课程目录

2. 人类语言处理课程 DLHLP

课程笔记:

章节简介
1 - Introduction人类语言处理介绍
2 - Token语音及文本表示
3 - LASLAS
4 - CTC, RNN-T, moreCTC, RNN-T, more
5 - HMMHMM

参考资料:

李宏毅《深度学习人类语言处理》国语(2020) 哔哩哔哩

李宏毅 DLHLP 2020 课程主页

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值