人工智能学习:Transformer架构。

Transformer架构概述

Transformer架构由Vaswani等人在2017年提出,彻底改变了自然语言处理领域。该架构摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),完全依赖自注意力机制(Self-Attention)来处理序列数据。其核心优势在于并行化处理能力和对长距离依赖关系的有效建模。

自注意力机制

自注意力机制是Transformer的核心组件,允许模型在处理每个位置时动态关注输入序列的不同部分。给定输入序列$X \in \mathbb{R}^{n \times d}$,自注意力的计算过程如下:

  1. 将输入通过线性变换生成查询(Query)、键(Key)和值(Value)矩阵: $$Q = XW_Q, \quad K = XW_K, \quad V = XW_V$$

  2. 计算注意力分数并应用缩放点积: $$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

以下是一个自注意力机制的PyTorch实现示例:

import torch
import torch.nn.functional as F

class SelfAttention(torch.nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        self.values = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = torch.nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        N = query.shape[0]
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        # Split embedding into self.heads pieces
       
### Transformer架构概述

Transformer架构由Vaswani等人在2017年提出,彻底改变了自然语言处理领域。该架构摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),完全依赖自注意力机制(Self-Attention)来处理序列数据。其核心优势在于并行化处理能力和对长距离依赖关系的有效建模。

### 自注意力机制

自注意力机制是Transformer的核心组件,允许模型在处理每个位置时动态关注输入序列的不同部分。给定输入序列$X \in \mathbb{R}^{n \times d}$,自注意力的计算过程如下:

1. 将输入通过线性变换生成查询(Query)、键(Key)和值(Value)矩阵:
   $$Q = XW_Q, \quad K = XW_K, \quad V = XW_V$$

2. 计算注意力分数并应用缩放点积:
   $$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

以下是一个自注意力机制的PyTorch实现示例:

```python
import torch
import torch.nn.functional as F

class SelfAttention(torch.nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        self.values = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = torch.nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        N = query.shape[0]
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        # Split embedding into self.heads pieces
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值