深度学习Week5——运动鞋识别

文章目录
深度学习Week5——运动鞋识别
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
3、划分数据集
四、构建CNN网络
五、训练模型
1、设置超参数
2、编写训练函数
3、编写测试函数
六、结果可视化
1、Loss图和Accuracy图
2、指定图片识别
3、加载并保存模型
七、拔高训练

一、前言

大家新年快乐呀🐉🎉
过年期间休息(摆大烂)了一段时间,好多内容忘记了😭,因此作为新年第一篇,我们就以复习巩固为主。
新的一年,我更换了设备,如今也是支持GPU啦

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.11.3
  • 编译器:Pycharm2023.2.3
    深度学习环境:Pytorch
    显卡及显存:RTX 3060 8G

三、前期工作

1、导入库并配置环境

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision	
from torchvision import transforms, datasets
import os,PIL,pathlib,random
import numpy as np

device = torch.device("cuda")

device

输出:

device(type='cuda')

至此,我们的环境已经配置完成。

2、 导入数据

我们下载好文件到自己的文件夹目录中,复制文件地址备用,注意这里要将[str(path).split("\\")[4] for path in data_paths][]里的数字改为自己路径所对应的数字,例如我的是“2”
这里引用K同学对于下列函数的解释。

  • 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。

  • 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。

  • 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中

  • 第四步:打印classeNames列表,显示每个文件所属的类别名称。

data_dir = 'Data/Week5'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
classeNames
输出:
['test', 'train']

其实通过前5周的学习,前面导入数据,构建模型的过程已经十分熟练了,因此不再过多废话啦

data_dir = 'Data/Week5/train'
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.jpg')))
print("训练图片总数为:",image_count)

输出:

训练图片总数为: 502

然后我们可以指定最后一张鞋的照片作为测试是否导入数据成功。

roses = list(data_dir.glob('Adidas/*.jpg'))
PIL.Image.open(str(roses[-1]))

在这里插入图片描述

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

train_dataset = datasets.ImageFolder("Data/Week5/train/",transform = train_transforms)
test_dataset  = datasets.ImageFolder("Data/Week5/test/",transform = train_transforms)

train_dataset.class_to_idx

输出:

{'adidas': 0, 'nike': 1}

3、划分训练集

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size = batch_size,
                                           shuffle = True,
                                           num_workers = 1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size = batch_size,
                                          shuffle = True,
                                          num_workers = 1)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

四 、构建简单的CNN网络

nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)和第五个参数(padding)分别是步长和填充大小,默认为1和0,一般可省略。

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 12, kernel_size = 5, padding = 0), # 12*220*220
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.conv2 = nn.Sequential(
            nn.Conv2d(12, 12, kernel_size = 5, padding = 0), # 12*216*216
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.pool3 = nn.Sequential(
            nn.MaxPool2d(2))                              # 12*108*108
        
        self.conv4 = nn.Sequential(
            nn.Conv2d(12, 24, kernel_size = 5, padding = 0), # 24*104*104
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.conv5 = nn.Sequential(
            nn.Conv2d(24, 24, kernel_size = 5, padding = 0), # 24*100*100
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.pool6 = nn.Sequential(
            nn.MaxPool2d(2))                              # 24*50*50

        self.dropout = nn.Sequential(
            nn.Dropout(0.2))
        
        self.fc=nn.Sequential(
            nn.Linear(24*50*50, len(classeNames)))
        
    def forward(self, x):
        
        batch_size = x.size(0)
        x = self.conv1(x)  # 卷积-BN-激活
        x = self.conv2(x)  # 卷积-BN-激活
        x = self.pool3(x)  # 池化
        x = self.conv4(x)  # 卷积-BN-激活
        x = self.conv5(x)  # 卷积-BN-激活
        x = self.pool6(x)  # 池化
        x = self.dropout(x)
        x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
        x = self.fc(x)
       
        return x

device = "cuda"
print("Using {} device".format(device))

model = Model().to(device)
model

输出:

Using cuda device

Model(
  (conv1): Sequential(
    (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv2): Sequential(
    (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool3): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv4): Sequential(
    (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv5): Sequential(
    (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool6): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dropout): Sequential(
    (0): Dropout(p=0.2, inplace=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=60000, out_features=2, bias=True)
  )
)

五、训练模型

1、设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(), lr = learn_rate)

2、编写训练函数

其核心思想是在每个训练迭代中,它从数据加载器中获取一个小批量的训练数据(包含图像和标签),将数据传递给模型进行前向传播,计算损失,然后通过反向传播更新模型的参数。最后,它记录并返回训练的准确率和损失。

简要概括:

  • 从数据加载器中获取小批量训练数据。
  • 将数据传递给模型进行前向传播,计算预测值。
  • 计算预测值与真实标签之间的损失。
  • 使用反向传播更新模型参数。
  • 记录并返回训练准确率和损失。
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3、编写测试函数

下面这段代码主要是用于测试(评估)深度学习模型性能的函数。在每个测试迭代中,它从测试数据加载器中获取一个小批量的数据(包含图像和标签),通过模型进行前向传播,计算损失,然后记录测试准确率和损失。

简要概括:

  • 从测试数据加载器中获取小批量测试数据。
  • 将数据传递给模型进行前向传播,得到预测值。
  • 计算预测值与真实标签之间的损失。
  • 记录并返回测试准确率和损失。

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

# 测试函数
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4、设置动态学习率

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.98
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-4 # 初始学习率
optimizer  = torch.optim.SGD(model.parameters(), lr = learn_rate)

4、正式训练

主要是一个简单的训练循环,用于训练和评估深度学习模型多个epochs。在每个epoch中,它分别进行训练和测试,并记录训练集和测试集的准确率以及损失。最后,将每个epoch的结果打印出来。

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 20

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
print('Done')

输出:

Epoch: 1, Train_acc:53.0%, Train_loss:0.777, Test_acc:61.8%, Test_loss:0.681, Lr:1.00E-04
Epoch: 2, Train_acc:63.5%, Train_loss:0.639, Test_acc:73.7%, Test_loss:0.618, Lr:1.00E-04
Epoch: 3, Train_acc:66.9%, Train_loss:0.623, Test_acc:65.8%, Test_loss:0.660, Lr:9.20E-05
Epoch: 4, Train_acc:70.3%, Train_loss:0.571, Test_acc:71.1%, Test_loss:0.543, Lr:9.20E-05
Epoch: 5, Train_acc:75.7%, Train_loss:0.526, Test_acc:71.1%, Test_loss:0.535, Lr:8.46E-05
Epoch: 6, Train_acc:74.7%, Train_loss:0.523, Test_acc:78.9%, Test_loss:0.522, Lr:8.46E-05
Epoch: 7, Train_acc:78.3%, Train_loss:0.477, Test_acc:78.9%, Test_loss:0.467, Lr:7.79E-05
Epoch: 8, Train_acc:79.9%, Train_loss:0.468, Test_acc:75.0%, Test_loss:0.565, Lr:7.79E-05
Epoch: 9, Train_acc:79.5%, Train_loss:0.457, Test_acc:78.9%, Test_loss:0.493, Lr:7.16E-05
Epoch:10, Train_acc:82.7%, Train_loss:0.421, Test_acc:82.9%, Test_loss:0.490, Lr:7.16E-05
Epoch:11, Train_acc:85.5%, Train_loss:0.412, Test_acc:78.9%, Test_loss:0.474, Lr:6.59E-05
Epoch:12, Train_acc:86.1%, Train_loss:0.407, Test_acc:82.9%, Test_loss:0.452, Lr:6.59E-05
Epoch:13, Train_acc:86.3%, Train_loss:0.388, Test_acc:81.6%, Test_loss:0.504, Lr:6.06E-05
Epoch:14, Train_acc:86.9%, Train_loss:0.368, Test_acc:82.9%, Test_loss:0.453, Lr:6.06E-05
Epoch:15, Train_acc:88.2%, Train_loss:0.374, Test_acc:82.9%, Test_loss:0.456, Lr:5.58E-05
Epoch:16, Train_acc:89.4%, Train_loss:0.353, Test_acc:82.9%, Test_loss:0.470, Lr:5.58E-05
Epoch:17, Train_acc:89.2%, Train_loss:0.349, Test_acc:84.2%, Test_loss:0.461, Lr:5.13E-05
Epoch:18, Train_acc:90.2%, Train_loss:0.342, Test_acc:81.6%, Test_loss:0.414, Lr:5.13E-05
Epoch:19, Train_acc:89.4%, Train_loss:0.341, Test_acc:81.6%, Test_loss:0.443, Lr:4.72E-05
Epoch:20, Train_acc:91.8%, Train_loss:0.337, Test_acc:82.9%, Test_loss:0.475, Lr:4.72E-05
Done

六、结果可视化

1、Loss和Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize = (12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label = 'Training Accuracy')
plt.plot(epochs_range, test_acc, label = 'Test Accuracy')
plt.legend(loc = 'lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label = 'Training Loss')
plt.plot(epochs_range, test_loss, label = 'Test Loss')
plt.legend(loc = 'upper right')
plt.title('Training and Validation Loss')
plt # 因为我是用的Jupyter,因此不用plt.show()

结果:
在这里插入图片描述

2、指定图片识别

from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
    
    # 预测训练集中的某张照片
# 预测训练集中的某张照片
predict_one_image(image_path = 'Data/Week5/test/nike/31.jpg', 
                  model = model, 
                  transform = train_transforms, 
                  classes = classes)

输出:

预测结果是:nike

在这里插入图片描述

3、保存并加载模型

# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location = device))

输出:

<All keys matched successfully>

七、拔高训练—提高测试集accuracy

1. 动态学习率

在深度神经网络中,学习率是最重要的超参数之一。如何调整学习率是“炼丹玄学”中最重要的药方之一。作为当前最为流行的深度学习框架,PyTorch已经为我们封装好了一些在训练过程中动态调整学习率的方法,下面就让我们来看一下。

  1. torch.optim.lr_scheduler.StepLR
    等间隔动态调整方法,每经过step_size个epoch,做一次学习率decay,以gamma值为缩小倍数。
    torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
  2. lr_scheduler.LambdaLR
    根据自己定义的函数更新学习率。
    torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)
  3. lr_scheduler.MultiStepLR
    在特定的 epoch 中调整学习率
    torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)

我们使用torch.optim.lr_scheduler
他的关键参数解释如下:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
  • gamma(float):学习率衰减的乘法因子。Default:0.1

torch.optim.lr_scheduler上,基于当前epoch的数值,为我们封装了几种相应的动态学习率调整方法,该部分的官方手册传送门——optim.lr_scheduler官方文档。需要注意的是学习率的调整需要应用在优化器参数更新之后,其应用的简要代码示例如下:

>>> optimizer = torch.optim.Adam(...) #选择一种优化器
>>> scheduler = torch.optim.lr_scheduler.... # 选择一种动态调整学习率的方法,可以是下面几种之一
>>> for epoch in range(100):
>>>     train(...)
>>>     validate(...)

>>>     optimizer.step()
>>>     scheduler.step() # 需要在优化器参数更新之后再动态调整学习率

2. 因此我们动态学习率调用官方接口,并且提高epochs数量,依此来提高测试集accuracy

在这里插入图片描述
在这里插入图片描述

可以看到,我们调用了官方接口来动态学习率,同时增加了epochs的值,Accuracy有一定提高,但是Accuracy并未达到84%,说明我们还没有找到最佳模型,仍然需要改进。

你好!对于心脏病预测的问题,使用循环神经网络(RNN)是一种常见的方法。RNN适用于处理序列数据,而心电图信号就是一种序列数据。在使用RNN进行心脏病预测时,你可以将心电图信号作为输入序列,然后通过训练RNN模型来预测患者是否患有心脏病。 首先,你需要准备一个合适的数据集,其中包含心电图信号和相应的心脏病标签。可以使用公开的心电图数据集,如PTB数据库或MIT-BIH数据库。然后,你可以对数据进行预处理和特征工程,如数据清洗、滤波、降采样等。 接下来,你可以构建一个RNN模型。RNN模型由一系列循环层组成,每个循环层都会处理一个时间步的输入数据。你可以选择不同类型的RNN单元,如简单循环单元(SimpleRNN)、长短期记忆网络(LSTM)或门控循环单元(GRU)。通过添加适当的全连接层和激活函数,你可以将RNN模型输出映射到二分类问题(有或无心脏病)的结果。 然后,你可以使用训练集对RNN模型进行训练,并使用验证集进行模型调优。在训练过程中,你可以使用适当的损失函数(如交叉熵)和优化算法(如随机梯度下降)来最小化模型的预测误差。 最后,你可以使用测试集对训练好的模型进行评估,并计算模型的性能指标,如准确率、精确率、召回率等。这些指标可以帮助你评估模型的预测能力和泛化能力。 需要注意的是,心脏病预测是一个复杂的医学问题,仅仅使用心电图信号可能不能得到准确的预测结果。通常情况下,还需要结合其他患者的临床信息和医学知识来进行综合评估。因此,在进行心脏病预测时,建议与专业医生合作,并遵循相关的医学准则和规范。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值