前言
你是不是也曾在朋友面前自信满满地说:“AI我可太熟了!”然后随便丢一句“写篇短文”给大模型,坐等它秒出结果?但你有没有想过,那几秒钟里,AI到底干了什么?从你敲下的几个字,到屏幕上蹦出的流畅句子,这背后可不是什么“魔法”。如果你连LLM(大语言模型)如何生成文本都不清楚,还好意思说自己懂AI?别急,今天我就带你拆开这台“写作机器”,用最直白的方式讲清楚每个步骤,看完你再吹牛,至少底气足点!
一、LLM文本生成的核心步骤
1. 输入阶段(Input):一切从你开始
一切的开始,来自用户的输入。你可以输入一个提示、一个问题,或者是一段未完成的句子,模型会基于这个“起点”继续生成内容。
2. 分词(Tokenization):把句子拆成小块
为了让模型理解文本,首先需要将文字拆解成更小的单元——Token。Token 可能是一个词、一个子词,甚至是一个字符,具体取决于使用的分词器(如 BPE、WordPiece 等)。比如“Hello, I’m an AI assistant.”可能会被拆成[‘Hello’, ‘,’, ‘I’, “'m”, ‘an’, ‘AI’, ‘assistant’, ‘.’]。
3. 嵌入(Embedding):给每个小块赋予“含义”
接下来,分词后的每个Token会被转换为向量,也就是我们常说的“嵌入表示”。这个过程帮助模型理解每个Token的语义信息。比如,“Hello”和“Hi”在嵌入空间里会很接近。
4. 位置编码(Positional Encoding):记住谁在前谁在后
由于 Transformer 本身不具备处理“顺序”的能力,因此需要为每个Token添加位置信息,以便模型知道哪个词在前,哪个在后。位置编码给每个Token加上顺序信息,确保模型理解词序,比如“猫追狗”和“狗追猫”的区别。
5. Transformer处理阶段:大脑开始运转
这一步是 LLM 的“核心大脑”部分。嵌入和位置编码后的向量会被送入多层Transformer结构中,每层都包含自注意力机制和前馈神经网络。自注意力(Self-Attention)允许模型在处理某个词时,同时“关注”其他词,从而捕捉长距离的上下文依赖。它通常有多层(比如Llama3有32层),逐步完善文本。
6. 输出转换(Output Transformation):准备“选词”
经过多层 Transformer 后,输出结果还不能直接变成文字。我们需要通过一个线性变换,将它映射回词表中的每个词可能性。处理后的结果变成一个巨大的向量,每个维度对应词汇表中的一个词。
7. Softmax函数:把潜力变成概率
接下来应用 Softmax,把这些值转化为概率分布,表示下一个Token是词表中每个词的可能性有多大。
8. 采样(Sampling):决定下一个词
有了概率分布,模型就可以选择下一个Token了。不同的策略会影响生成结果,比如:
- 贪心采样(Greedy):每次选最高概率的词。
- 随机采样(Random):按概率随机选择一个词。
- 核采样(Top-p):在累计概率前p%的词中随机选一个。
- 温度采样(Temperature):控制生成的多样性。
9. 生成文本:一步步拼凑
Token 一个个被采样出来,拼接在一起,直到模型遇到结束标记,或达到设定长度,完成整个文本生成过程。模型通过重复预测和采样的过程,直到生成完整的句子。
10. 后处理(Post-processing):给文本“化妆”
最后,对生成的文本进行一些清理,比如去掉特殊符号、调整格式,甚至可以进行语法检查,使得文本更自然可读。
二、用代码案例深入理解生成流程(程序员最兴奋的章节
我们以 OpenAI 的 GPT-2 模型为例,配合 tikToken
分词器和 PyTorch 框架,来展示如何分词、嵌入,并查看每个Token的语义向量。
import torchimport tikTokenfrom transformers import GPT2Model
# 初始化编码器encoder = tikToken.get_encoding("gpt2")model = GPT2Model.from_pretrained("gpt2")
# 输入文本text = "Hello, I'm an AI assistant."Token_ids = encoder.encode(text)Tokens = [encoder.decode([tid]) for tid in Token_ids]
# 转换为张量inputs = torch.tensor([Token_ids])
# 获取模型嵌入输出with torch.no_grad(): outputs = model(inputs)
last_hidden_states = outputs.last_hidden_statefor Token, emb in zip(Tokens, last_hidden_states[0]): print(f"Token: {Token}\nEmbedding: {emb}\n")
每一个Token对应的向量(Embedding),都承载着它在语义空间中的“位置”。
三、继续深入:从位置编码到输出生成
示例1:位置编码 Positional Encoding
Transformer需要位置信息才能理解顺序。以下代码实现了位置编码的生成:
import torchimport math
def positional_encoding(seq_length, d_model): pe = torch.zeros(seq_length, d_model) position = torch.arange(0, seq_length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe
pos_encoding = positional_encoding(10, 16)print(pos_encoding)
示例2:构建一个简化的 Transformer 模型
import torch.nn as nn
class SimpleTransformer(nn.Module): def __init__(self, input_dim, model_dim, num_heads, num_layers): super(SimpleTransformer, self).__init__() self.embedding = nn.Embedding(input_dim, model_dim) self.position_encoding = positional_encoding(5000, model_dim) self.transformer_layers = nn.TransformerEncoder( nn.TransformerEncoderLayer(model_dim, num_heads, model_dim * 4), num_layers ) self.fc_out = nn.Linear(model_dim, input_dim)
def forward(self, x): x = self.embedding(x) + self.position_encoding[:x.size(1), :] x = self.transformer_layers(x) return self.fc_out(x)
# 示例运行model = SimpleTransformer(input_dim=10000, model_dim=512, num_heads=8, num_layers=6)input_seq = torch.randint(0, 10000, (10, 20))output_seq = model(input_seq)
# Softmax 转换为概率output_layer = nn.Linear(512, 10000)output_seq_transformed = output_layer(output_seq)softmax = nn.Softmax(dim=-1)probabilities = softmax(output_seq_transformed)
可以看到,最终得到的是一个维度为 (batch_size, seq_length, vocab_size)
的概率分布,用于采样生成下一个词。
示例3:采样策略与预测
# 贪心预测predicted_tokens = torch.argmax(probabilities, dim=-1)print(predicted_tokens)
# 随机采样predicted_tokens_random = torch.multinomial( probabilities.view(-1, probabilities.size(-1)), 1).view(probabilities.size()[:-1])print(predicted_tokens_random)
示例4:文本生成主流程
以 LLaMA3
为例,下面是一个典型的生成循环:
def generate_text(model, tokenizer, start_text, max_length): tokens = tokenizer.encode(start_text) generated = tokens.copy() for _ in range(max_length - len(tokens)): input_tensor = torch.tensor([generated]) with torch.no_grad(): output = model(input_tensor) next_token_logits = output[:, -1, :] next_token_probs = torch.softmax(next_token_logits, dim=-1) next_token = torch.multinomial(next_token_probs, num_samples=1).item() generated.append(next_token) return tokenizer.decode(generated)
四、总结
看完这篇,LLM从输入到输出的“魔法”流程你总算搞清楚了吧?别再只是当个“AI用家”了,懂点门道,下次跟人聊AI也能硬气地说:“生成文本?小意思,我连Transformer怎么跑都知道!”当然,这只是AI世界的入门课,想真正在这个领域站稳脚跟,还有更多硬核知识等着你去啃。怎么样,敢不敢给LLM丢个复杂问题,测试一下你刚学的“理论”?
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
