在VM虚拟机中装centOS的网络配置

今天在VM上安装了centOS7.0,安装后发现无法上网,感觉应该是配置的问题,经过一段时间的尝试终于搞定了,写一下总结。

1. 在/etc/sysconfig/network-scripts目录下,可以找到网卡的配置文件,可以看到有这些文件ifcfg-lo,ifcfg-ensxx,lo里面是本地回环地址,不需要修改,我们重点关注ensxx,其内容如下:

TYPE=Ethernet
BOOTPROTO=dhcp
DEFROUTE=yes
PEERDNS=yes
PEERROUTES=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_PEERDNS=yes
IPV6_PEERROUTES=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=ens33
UUID=be9ab078-ff5a-474a-a5c3-855ce6bfe77b
DEVICE=ens33
ONBOOT=no

可以看到该网卡默认设置是动态获取IP,而且并没有启动(ONBOOT=no)

2. 找到原因了,那么解决方法也就很好想了,改配置或者再加一个网卡,不过理想很丰满,并没有那么简单,单纯改配置并不能解决问题,而且在查询这个问题的同时我发现还可以把该网卡改成eth0,这种命名方式比较符合我们平时的习惯,所以博主也采用了这种方式(强迫症伤不起)

(以下内容参考文章:RHEL7系统将网卡名称eno16777736/ens32修改为eth0

1)  将网卡配置文件ifcfg-ensxx重命名为ifcfg-eth0

2)修改ifcfg-ensxx配置文件

ip地址与本机VMNet8网卡同一网段即可,如我的机器是192.168.200.1,那么只需要配成192.168.200为前缀即可,除了第一个和最后一个地址 ,这里配成了192.168.200.100

网关也是同一网段任意地址均可,这里配成了192.168.200.2

TYPE=Ethernet
BOOTPROTO=static
DEFROUTE=yes
PEERDNS=yes
PEERROUTES=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_PEERDNS=yes
IPV6_PEERROUTES=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=eth0
UUID=be9ab078-ff5a-474a-a5c3-855ce6bfe77b
DEVICE=eth0
ONBOOT=yes
IPADDR=192.168.200.100
NETMASK=255.255.255.0
GATEWAY=192.168.200.2

3)编辑grub配置文件”/etc/sysconfig/grub”,在”GRUB_CMDLINE_LINUX“变量中添加一句”net.ifnames=0biosdevname=0“(图中框出来的部分)


4) 运行命令:”grub2-mkconfig-o /boot/grub2/grub.cfg“,重新生成grub配置并更新内核参数

5) 需要在”/etc/udev/rules.d“目录中创建一个网卡规则”70-persistent-net.rules“,并写入下面的语句:

SUBSYSTEM=="net",ACTION=="add", DRIVERS=="?*", ATTR{type}=="1", ATTR{address}=="?*00:02:c9:03:00:31:78:f2",KERNEL=="tho*", NAME="eth0"

6) 重启系统,此时可以发现网卡已经改为eth0了


3. 经过第二步配置,此时应该可以ping通网关了,但是发现ping不同www.baidu.com,会提示找不到域名,这是因为DNS还没配置好,配置如下:

打开/etc/resolv.conf,添加如下内容:


nameserver 8.8.8.8
nameserver 8.8.4.4
nameserver 202.96.128.86
nameserver 192.168.200.2  #你的网关
search localdomain 

现在就可以愉快地上网了



AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值